Math, asked by umang3389, 10 months ago

The ratio of 6th term and 9th term of an
a.P is 7:9.Find the ratio of9th term to 13th term

Answers

Answered by amitkumar44481
5

 \bold{Given:-} \begin{cases} \sf{  \underline{The  \: Ratio  \: of  \: terms \:  are:-}}   \\ \sf{ {6}^{th}  = 7}  \\ \sf{ {9}^{th} = 9} \\  \:  \:  \:  \:  \:  \:  \:  or \\  \sf{ {6}^{th}  \ratio {9}^{th}  = 7 \ratio 9} \end{cases}

{ \underline {\large \star \:  {Solution:-}}}

 \frac{a_6}{a_9} =  \frac{7}{9}. \\  \\   \implies \:  \frac{a + 5d}{a + 8d}  =  \frac{7}{9}. \\  \\   \implies \: 9(a + 5d) = 7(a + 8d). \\  \\  \implies \: \:  \:  \:  9a + 45d = 7a + 56d. \\  \\  \implies \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   2a  = 56d - 45d. \\  \\  \implies \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:   \: a =  \frac{11d}{2} .

____________________________________

 \implies \:  \frac{a_9}{a_{13}} \\  \\  \implies \:  \frac{a + 8d}{a + 12d} . \\  \\  \implies \:  \frac{ \frac{11d}{2} + 8d }{ \frac{11d}{2}  + 12d} . \\  \\  \implies \:  \frac{ \frac{11 d+ 16d}{ \cancel2} }{ \frac{11d + 24d}{ \cancel2} }

 \implies \:  \frac{27 \cancel{d}}{35 \cancel{d}} . \\  \\  \implies \:  27\ratio35.

 \green{ \underline{ \large{ \boxed{Our \:  \:  Answer}}}} \\  \ \ \\      \green {\implies \: 27 \ratio35.}

 {\underline{ \large{ \star \: {Some \:  Information}}}}

 \purple{\large \boxed{ a_n = a + (n - 1)d}}

Similar questions