Math, asked by Vrushalikawalkar, 9 months ago

The ratio of a two digit number to the number obtained by reversing it's digits is 4:7 . The sum of digits is 9 ,find the number.

Answers

Answered by Anonymous
3

\blue{\bold{\underline{\underline{Answer:}}}}

 \:\:

 \green{\underline \bold{Given :}}

 \:\:

  • Ratio of original number to reversed two digit number is 4:7

  • Sum of digits is 9

 \:\:

 \red{\underline \bold{To \: Find:}}

 \:\:

  • The original number

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

Let the tens digit be 'x'

Let the ones digit be 'y'

 \:\:

 \underline{\bold{\texttt{Original number will be:}}}

 \:\:

\purple\longrightarrow  \sf 10x + y

 \:\:

 \underline{\bold{\texttt{Reversed number will be:}}}

 \:\:

\purple\longrightarrow  \sf 10y + x

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

 \sf \longmapsto \dfrac { 10x + y } { 10y + x } = \dfrac { 4 } { 7 }

 \:\:

 \sf \longmapsto 40y + 4x = 70x + 7y

 \:\:

 \sf \longmapsto 33y = 66x

 \:\:

 \underline{\bold{\texttt{Dividing the above equation by 33}}}

 \:\:

 \sf \longmapsto y = 2x --------(1)

 \:\:

Also ,

 \:\:

\purple\longrightarrow  \sf x + y = 9 -----(2)

 \:\:

 \underline{\bold{\texttt{Putting y = 2x in (2)}}}

 \:\:

 \sf \longmapsto x + 2x = 9

 \:\:

 \sf \longmapsto 3x = 9

 \:\:

 \sf \longmapsto x = \dfrac { 9 } { 3 }

 \:\:

 \sf \longmapsto x = 3

 \:\:

 \underline{\bold{\texttt{Putting x = 3 in (1)}}}

 \:\:

 \sf \longmapsto y = 2(3)

 \:\:

 \sf \longmapsto y = 6

 \:\:

 \underline{\bold{\texttt{Hence original number will be :}}}

 \:\:

 \sf \dag \: \: 10x + y

 \:\:

 \sf \dag \: \: 36

\rule{200}5

Answered by nidhirandhawa7
1

Step-by-step explanation:

pls make it brainlest answer

Attachments:
Similar questions