Math, asked by shankara49, 8 months ago

The ratio of an interior angle to an exterior angle of a regular polygon is 5 : 2. What is the number of sides of the polygon ?​

Answers

Answered by Anonymous
4

Answer:

\huge\underline\bold {Answer:}

Interior angle of polygon of n sides = (n – 2) × 180°/n

Exterior angle of a polygon of n sides = 360°/n

Given, (n – 2) × 180°/n : 360°/n = 5 : 2

=> (n – 2) × 180°/n × 360°/n = 5/2

=> (n – 2)/2 = 5/2

=> 2(n – 2) = 10

=> 2n – 4 = 10

=> 2n = 14

=> n = 7.

Therefore number of sides of the polygon is 7.

Answered by Anonymous
11

\bigstar \mid QUESTION :

  • The ratio of an interior angle to an exterior angle of a regular polygon is 5 : 2. What is the number of sides of the polygon ?

\bigstar \mid GIVEN :

  • Ratio of an interior and exterior angle of a regular polygon is 5:2 respectively.

\bigstar \mid TO FIND :

  • The no. of sides of the polygon.

\bigstar \mid SOLUTION :

We know that,

  • Interior angle of a polygon having n sides :-

 \sf  =  \frac{(n - 2 )\times 180\degree}{ n}  \\  \sf

And,

  • Exterior angle of a polygon having n sides :-

  \sf \:  =  \frac{360 \degree}{n}  \\

Now,

According to the question,

According to the question, We can say that,

 \implies \sf \:  \frac{(n - 2) \times 180 \degree}{n}  \ratio \:  \frac{360 \degree}{n}  = 5 \ratio2 \\

 \implies \sf \frac{(n - 2) \times  \cancel{180} \degree}{ \cancel{n}}  \times  \frac{ \cancel{n}}{ \cancel{360} \degree}  = 5 \ratio2 \\

 \sf \implies \sf \:  \frac{(n - 2)}{2}  =  \frac{5}{2}  \\

  \sf \implies \: 2(n - 2) = 5 \times 2

  \sf \implies \: 2n - 4 = 10

  \sf \implies \: 2n = 10 + 4

 \sf \implies \: 2n = 14

  \sf \implies \: n =  \frac{ \cancel{14}}{ \cancel2}

  { \underline{ \boxed{\bf \therefore \: n = 7}}}

HENCE,

  • No. of sides of polygon is 7.

CHECK POINT :

Putting the value of n :

  • In the formula of Interior angle of a polygon having n sides :-

 \sf  =  \frac{(n - 2 )\times 180\degree}{ n}  \\  \sf

And,

  • Exterior angle of a polygon having n sides :-

  \sf \:  =  \frac{360 \degree}{n}  \\

\sf   \implies \:  \frac{(n - 2 )\times 180\degree}{ n}  \ratio  \frac{360}{7}    =5 \ratio2 \\

  \sf \implies \:  \frac{(7 - 2) \times 180 \degree}{7}  \ratio \frac{360}{7} =  5 \ratio2 \\

  \sf \implies  \frac{ 5\times  \cancel{180}}{ \cancel7}   \times  \frac{ \cancel7}{ \cancel{360}} = 5 \ratio2 \\

 \sf \implies \:  \frac{5}{2}  =  5 \ratio2 \\

{\underline {\boxed{ \bf \therefore  \:  \: \: 5 \ratio2 = 5 \ratio2}}}

L. H. S = R. H. S.

  \sf \orange \dag{ \underline{\boxed{\bf \green{ Hence,\purple   V \red e \orange r \pink i \blue f  \green i \red e \pink d :  -}}}}{\orange \dag }

Similar questions