Math, asked by hemarengaraj26, 1 day ago

the ratio of csa to tsa of a right circular cylinder is 1:3 find the volmum of the cylinder if it tsa is 1848cm"​

Answers

Answered by mathdude500
28

Question :-

The ratio of curved surface area to total surface area of a right circular cylinder is 1:3. Find the volume of the cylinder, if its total surface area is 1848 square cm.

\large\underline{\sf{Solution-}}

Let assume that

Radius of cylinder = r cm

Height of cylinder = h cm

Now, Given that,

\rm \: CSA_{Cylinder} : TSA_{Cylinder} \:  =  \: 1 : 3 \\

We know,

Curved Surface Area and Total Surface Area of cylinder of radius r and height h is given by

\boxed{\sf{  \: CSA_{Cylinder} \:  =  \: 2\pi \: rh \: }} \\

and

\boxed{\sf{  \:TSA_{Cylinder} \:  =  \: 2 \: \pi \: r \: (h \:  +  \: r) \: }} \\

So, on substituting the values, we get

\rm \: \dfrac{2\pi \: rh}{2\pi \: r(h + r)}  = \dfrac{1}{3}  \\

\rm \: \dfrac{h}{h + r}  = \dfrac{1}{3}  \\

\rm \: 3h = r + h \\

\rm \: 3h - h = r  \\

\rm\implies \:r \:  =  \: 2h \:  -  -  - (1) \\

Further, given that

\rm \: TSA_{Cylinder} = 1848 \\

\rm \: 2\pi \: r(h + r) = 1848 \\

On substituting the value of r from equation (1), we get

\rm \: 2 \times \dfrac{22}{7} \times 2h(2h + h) = 1848

\rm \:  h(3h) = 147 \\

\rm \:  {h}^{2}  = 49 \\

\rm\implies \:h \:  =  \: 7 \: cm \\

On substituting the value of h in equation (1), we get

\rm \: r = 2 \times 7 \\

\rm\implies \:r = 14 \: cm \\

Now, we know that Volume of cylinder of radius r and height h is given by

\boxed{\sf{  \:Volume_{Cylinder} = \pi \:  {r}^{2}  \: h \: }} \\

So, on substituting the values of r and h, we get

\rm \: Volume_{Cylinder} = \dfrac{22}{7}  \times 14 \times 14 \times 7 \\

\rm \: Volume_{Cylinder} =22\times 14 \times 14  \\

\rm\implies \: Volume_{Cylinder} =4312 \:  {cm}^{3}   \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More information

Volume of cylinder = πr²h

T.S.A of cylinder = 2πrh + 2πr²

Volume of cone = ⅓ πr²h

C.S.A of cone = πrl

T.S.A of cone = πrl + πr²

Volume of cuboid = l × b × h

C.S.A of cuboid = 2(l + b)h

T.S.A of cuboid = 2(lb + bh + lh)

C.S.A of cube = 4a²

T.S.A of cube = 6a²

Volume of cube = a³

Volume of sphere = 4/3πr³

Surface area of sphere = 4πr²

Volume of hemisphere = ⅔ πr³

C.S.A of hemisphere = 2πr²

T.S.A of hemisphere = 3πr²

Answered by MichWorldCutiestGirl
52

❐QuEsTiOn,

the ratio of csa to tsa of a right circular cylinder is 1:3 find the volmum of the cylinder if it tsa is 1848cm"

❐SoLuTiOn,

As we know that,

Curved surface Area and total surface area of cylinder of radius r and height is given by

 \tt \: CSA _{(Cylinder)}

and

 \tt \:  TSA_{(Cylinder)}

So, on substituting the value, we get

  \tt \: \frac{2\pi \: rh}{2\pi  \: r(h +  + r)} =  \frac{1}{3}  \\

  \tt\frac{h}{h + 3}  =  \frac{1}{3}  \\

 \tt3h \:  = r + h

 \tt3h - h = r \:

 \tt \: r = 2h ----(1)

Further Given that,

 \tt \:  TSA_{(Cylinder)} = 1848

 \tt2\pi \: r(h + r) = 1848

On substituting the value of r from equation (1)

 \tt \: 2 \times \frac{22}{7}  \times 2h(2h + h) = 1848 \\

 \tt \: h(3h) = 147 \\

 \tt \:  {h}^{2}  = 49 \\

 \tt \: h = 7cm

On substituting the value of h in Equation (1) , we get

 \tt \: r \:  = 2 \times 7  \\

 \tt \: r = 14cm

Now, we know that volume of cylinder of radius r and height h is given by

 \tt \: Volume _{(Cylinder)}  = \pi \:  {r}^{2} h \\

So, on substituting the value of r and h, we get

 \tt \: Volume _{(Cylinder)}  =  \frac{22}{7}  \times 14 \times 14 \times 7 \\

 \tt \: Volume _{(Cylinder)}  = 22 \times 14 \times 14 \\

 \tt \: Volume _{(Cylinder)}  = 4312 {cm}^{3}

❥Hope you get your AnSwEr.

Similar questions