Math, asked by bhagwatimk, 4 months ago

The ratio of curved surface area of two spheres 4:9 find the ratio of radii and volumes​

Answers

Answered by ItzNiladoll
6

Answer:

ʜᴇʀᴇ ɪs ʏᴏᴜʀ ᴀɴsᴡᴇʀ⬇️

Step-by-step explanation:

sᴜʀғᴀᴄᴇ ᴀʀᴇᴀ ᴏғ ᴀ sᴘʜᴇʀᴇ ɪs ᴅɪʀᴇᴄᴛʟʏ ᴘʀᴏᴘᴏʀᴛɪᴏɴᴀʟ ᴛᴏ sǫᴜᴀʀᴇ ᴏғ ʀᴀᴅɪᴜs,ʜᴇɴᴄᴇ ʀᴀᴛɪᴏ ᴏғ ʀᴀᴅɪɪ ᴏғ ᴛᴡᴏ sᴘʜᴇʀᴇs ɪs 2:3.

Attachments:
Answered by MagicalBeast
6

Given :

  • Ratio of Curved surface area of two spheres = 4:9

To find :

  • Ratio of there radius
  • Ratio of volume

Formula used :

  • Curved surface area of sphere = 4πr²
  • Volume of sphere = (4/3)πr³

Solution :

Let -

  • Radius of 1st sphere = r
  • Radius of 2nd sphere = R

Part 1- CSA

\sf \:  CSA  \: of \:  First \:  sphere  \: :  \: CSA \:  of  \: second  \: sphere \:  = \:  4 \: : \: 9 \:

\sf \implies \:  \dfrac{CSA  \: of \:  First \:  sphere  \: }{ \: CSA \:  of  \: second  \: sphere \: } = \:  \dfrac{4}{9}

\sf \implies \:  \dfrac{4\pi \:  {r}^{2} }{4\pi \:  {R}^{2} }  \:  = \:   \dfrac{4}{9}

\sf \implies \:  \dfrac{  {r}^{2} }{{R}^{2} }  \:  = \:   \dfrac{4}{9}

\sf \implies \:  \bigg( \dfrac{  {r} }{{R}} \bigg)^{2}   \:  = \:   \dfrac{ {2}^{2} }{ {3}^{2} }

\sf \implies \:  \bigg( \dfrac{  {r} }{{R}} \bigg)^{2}   \:  = \:   \bigg( \dfrac{  2}{3} \bigg)^{2}

 \sf \implies \:  \bigg( \dfrac{  {r} }{{R}} \bigg) \:   = \:  \dfrac{2}{3}

\sf \implies \:  radius  \: of \:  First \:  sphere  \: \: radius \:  of  \: second  \: sphere \: = \:  \bold{ 2 \:  :  \: 3}

_______________________________________________

\sf \:  \:  volume  \: of \:  first \:  sphere  \: :  \: volume \:  of  \: second  \: sphere \:  = \:   \dfrac{volume  \: of \:  first \:  sphere  \: :  \: }{volume \:  of  \: second  \: sphere \: }

\sf \:  \implies \:\dfrac{volume  \: of \:  first \:  sphere  \: :  \: }{volume \:  of  \: second  \: sphere \: } \:  =  \dfrac{ \frac{4}{3} \pi \:  {r}^{3} }{ \frac{4}{3}\pi \:  { R }^{3}  }  \\  \\ \sf \:  \implies \:\dfrac{volume  \: of \:  first \:  sphere  \: :  \: }{volume \:  of  \: second  \: sphere \: } \:  =  \dfrac{   {r}^{3} }{  { R }^{3}  }  \\  \\ \sf \:  \implies \:\dfrac{volume  \: of \:  first \:  sphere  \: :  \: }{volume \:  of  \: second  \: sphere \: } \:  =   \:  \bigg(\dfrac{   {r} }{  \:  { R }} \bigg)^{3}   \\  \\ \sf \:  \implies \:\dfrac{volume  \: of \:  first \:  sphere  \: :  \: }{volume \:  of  \: second  \: sphere \: } \:  =   \:  \bigg(\dfrac{   {2} }{ { 3}} \bigg)^{3}   \\  \\ \sf \:  \implies \:\dfrac{volume  \: of \:  first \:  sphere  \: :  \: }{volume \:  of  \: second  \: sphere \: } \:  =   \:  \dfrac{   {2} ^{3}  }{ { 3} ^{3}  } \\  \\  \sf \:  \implies \:\dfrac{volume  \: of \:  first \:  sphere  \: :  \: }{volume \:  of  \: second  \: sphere \: } \:  =   \:  \dfrac{   8}{ 27}\\  \\ \sf \:  \:  volume  \: of \:  first \:  sphere  \: :  \: volume \:  of  \: second  \: sphere \:  = \:   \bold{8 \:   :  \: 27}

_______________________________________________

ANSWER :

  • Ratio of radius = 2 : 3
  • Ratio of volume = 8 : 27

Similar questions