Physics, asked by shreya382913, 1 month ago

the ratio of difference of closest approaches of proton and an alpha particle projected towards the same nucleus with same initial kinetic energy​

Answers

Answered by ValeryLegasov
99

Answer:

0.5 explanation is in the image

Attachments:
Answered by SparklingBoy
173

Solution :-

We Know,

 \text m_ \alpha = 4\text{amu}

\text m_\text p = 1\text{amu}

Calculating Kinetic Energies :

⏩ For α - particle :

\text{K.E}_\alpha = \frac{1}{2} \text m_ \alpha\text v_ \alpha {}^{2} \\

\text{K.E}_\alpha = \frac{1}{2} \times 4\times \text v_ \alpha {}^{2} \\

 \large\green{ \pmb{\bf{K.E}_\alpha = 2 v_ \alpha {}^{2}}} \\

For proton :

\text{K.E}_\text p = \frac{1}{2} \text m_ \text p\text v_ \text p {}^{2} \\

\text{K.E}_\text p = \frac{1}{2} \times 1\times \text v_ \text p {}^{2} \\

 \large\green{ \pmb{\bf{K.E}_\text p = \dfrac{1}{2} v_ \text p {}^{2}}} \\

As Given in Question kinetic energy is same of both α - particle and proton :

 \dfrac{\text K.\text E_ \alpha }{\text K.\text E_\text p} = 1 \\

:\longmapsto \frac{2 \times {\text v_ \alpha }^{2} }{ \frac{1}{2} \times\text v_\text p {}^{2} } = 1 \\

:\longmapsto \text v_\text p {}^{2} = 4 \text v_ \alpha {}^{2} \\

\purple{ \Large :\longmapsto  \underline {\boxed{{\pmb{\bf v_p = 2v_\alpha}} }}}

 We Have 3rd Equation of Motion as :

 \pink{ \bigstar \: \: } \large \bf \orange{ \underbrace{ \underline{ {v}^{2} - {u}^{2} = 2as }}}

Applying 3rd Equation For α - particle

:\longmapsto\text v_ \alpha {}^{2} - \text u_ \alpha {}^{2} = 2\text a\text s_ \alpha \\

As Initial Velocity is 0  

:\longmapsto\text v_ \alpha {}^{2} - 0 = 2\text a\text s_ \alpha \\

 \red{\large \pmb{ \bf 2as_ \alpha = v_ \alpha {}^{2} }} \: - - - (1)

Applying 3rd Equation For proton :

:\longmapsto\text v_ \p {}^{2} - \text u_ \p {}^{2} = 2\text a\text s_ \p \\

As Initial Velocity is 0  

:\longmapsto\text v_ \p {}^{2} - 0 = 2\text a\text s_ \p \\

 \red{\large{ \bf 2as_ \p = v_ \p {}^{2} }} \: - - - (2)

Dividing (2) by (1) :

\pmb{\bf\dfrac{s_{\alpha}}{s_p} = \frac{ {v_ \alpha }^{2} }{v_p {}^{2} } } \\

Putting \pmb{\bf v_p = 2v_\alpha}

:\longmapsto \sf\dfrac{s_{\alpha}}{s_p} = \frac{ {v_ \alpha }^{2} }{(2v_ \alpha) {}^{2} } \\

:\longmapsto \sf\dfrac{s_{\alpha}}{s_p} = \frac{{ \cancel{v_ \alpha }^{2}} }{4 \: \cancel{v_ \alpha {}^{2} }} \\ \purple{ \Large :\longmapsto  \underline {\boxed{{\pmb{\dfrac{s_{p}}{s_ \alpha } = \frac{4}{1} } }}}}

Hence,

\large\underline{\pink{\underline{\frak{\pmb{Required \: Ratio = 4 :1}}}}}

Similar questions