Physics, asked by sonupathak999india, 9 months ago

The ratio of electric force and gravitational force between a
proton and an electron at a certain distance is
(A)10^41
B) 2.4x10^41
(C) 2.4x10^39
(D) 3.9x10^24​

Answers

Answered by Anonymous
2

 \mathfrak{ \huge{ \red{ \underline{ \underline{ANSWER}}}}} \\  \\ \implies \sf \: mass \: of \: ptoton \: m1 = 1.67 \times  {10}^{ - 27}  \: kg \\  \implies \sf \: mass \: of \: electron \: m2 = 9.1 \times  {10}^{ - 31}  \: kg \\  \implies \sf \: charge \: of \: proton \: q1 = 1.6 \times  {10}^{ - 19}  \: C \\  \implies  \sf \: charge \: of \: electron \: q2 =  - 1.6 \times  {10}^{ - 19}  \: C \\  \implies \sf \: gravitational \: constant \: G = 6.67 \times  {10}^{ - 11}  \:  \frac{N {m}^{2} }{ {kg}^{2} } \\  \implies \sf \: coloumb \: constant \: k = 9 \times   {10}^{9}   \:  \frac{N {m}^{2} }{ {C}^{2}}   \\  \\  \star \sf \:  \blue{ \bold{Formula}} \\  \\  \implies \sf \:  \pink{ \bold{Fe =  \frac{kq1q2}{ {r}^{2} } }} \\  \\  \implies \sf \:  \green{ \bold{Fg =  \frac{Gm1m2}{ {r}^{2}}}}  \\  \\  \star \sf \:  \blue{ \bold{Calculation}} \\  \\  \implies \sf \: { \frac{Fe}{Fg} =  \frac{kq1q2}{Gm1m2}  } \\  \\  \implies \sf \:  \frac{Fe}{Fg}  =  \frac{9 \times  {10}^{9}  \times 1.6 \times  {10}^{ - 19} \times 1.6 \times  {10}^{ - 19}  }{6.67  \times {10}^{ - 11} \times 1.67 \times  {10}^{ - 27}  \times 9.1 \times  {10}^{ - 31}  }  \\  \\    \huge{\star} \: \boxed{ \bold{ \orange{ \sf{ \frac{Fe}{Fg} = 2.4 \times  {10}^{41}  }}}}

Similar questions