Math, asked by qumerjahabegum, 19 days ago

The ratio of incomes of 'A' and 'B' is 3:5 and sum of incomes of A and B is 32,000/-. Find income of B.​

Answers

Answered by Anonymous
37

Given :

  • Ratio of the incomes = 3:5
  • Sum of their incomes = 32000

 \\ \rule{200pt}{3pt}

To Find :

  • Income of B = ?

 \\ \rule{200pt}{3pt}

Solution :

 {\dag \; {\underline{\pmb{\frak{ Let \; the \; Ratios \; :- }}}}}

  • ➟ Income of A = 3y
  • ➟ Income of B = 5y

 \\ \qquad{\rule{150pt}{1pt}}

 {\dag \; {\underline{\pmb{\frak{ Calculating \; the \; value \; of \; y \; :- }}}}}

 \begin{gathered} \; \dashrightarrow \; \; \sf { \bigg\{ First \; No. \bigg\} + \bigg\{ Second \; No. \bigg\} = Sum{\small_{(Both \; Incomes)}} } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; \sf { 3y + 5y = 32000 } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; \sf { 8y = 32000 } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; \sf { y = \dfrac{32000}{8} } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; \sf { y = \cancel\dfrac{32000}{8} } \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow \; \; {\qquad{\red{\sf { y = 4000 }}}} \\ \end{gathered}

 \\ \qquad{\rule{150pt}{1pt}}

 {\dag \; {\underline{\pmb{\frak{ Calculating \; the \; Incomes \; :- }}}}}

  • ➢ Income of A = 3y = 3 × 4000 = 12000
  • ➢ Income of B = 5y = 5 × 4000 = 20000

 \\ \qquad{\rule{150pt}{1pt}}

 {\dag \; {\underline{\pmb{\frak{ Therefore \; :- }}}}}

❛❛ Income of B is 20000 . ❜❜

 \\ {\underline{\rule{300pt}{9pt}}}

Answered by kesharwaniraju87
3

Answer:

let be, A is 3 x

and B is 5 x

then A+B= 32,000/-

3x+5x=32000

....

Similar questions