Math, asked by Jassu2008, 11 days ago

The Ratio of Length To Breadth of a Rectangular Field is 4 : 3. If Its Diagonal is 200 m, The Area of The Field in square meters Do it With Proof



a) 18200 b) 19200 c) 18500 d) 18900​

Answers

Answered by sethrollins13
231

Given :

  • The Ratio of Length To Breadth of a Rectangular Field is 4 : 3.
  • Diagonal of Rectangle is 200 m .

To Find :

  • Area of field .

Solution :

\longmapsto\tt{Let\:length\:of\:the\:field\:be=4x}

\longmapsto\tt{Let\:breadth\:of\:the\:field\:be=3x}

Using Formula :

\longmapsto\tt\boxed{Diagonal=\sqrt{{(l)}^{2}+{(b)}^{2}}}

Putting Values :

\longmapsto\tt{200=\sqrt{{(4x)}^{2}+{(3x)}^{2}}}

\longmapsto\tt{200=\sqrt{{16x}^{2}+{9x}^{2}}}

\longmapsto\tt{200=\sqrt{{25x}^{2}}}

\longmapsto\tt{200=5x}

\longmapsto\tt{\cancel\dfrac{200}{5}=x}

\longmapsto\tt\bf{40=x}

Value of x is 40 .

Therefore :

\longmapsto\tt{Length\:of\:field=4(40)}

\longmapsto\tt\bf{160\:m}

\longmapsto\tt{Breadth\:of\:field=4(30)}

\longmapsto\tt\bf{120\:m}

For Area :

Using Formula :

\longmapsto\tt\boxed{Area\:of\:Rectangle=l\times{b}}

Putting Values :

\longmapsto\tt{160\times{120}}

\longmapsto\tt\bf{19200\:{m}^{2}}

Option b) 19200 is Correct .

Answered by Atlas99
262

See the attachment for figure.

________________________________________

Let length and breadth be 4x and 3x respectively.

Given:

PR = 200m(Diagonal)

PQ = 4x(Length)

QR = 3x(Breadth)

To Find:

• The area of the field in m^2

Solution:

In the ∆ PQR, Using pathagoras theorem,

 \sf \pink{\large{(PR)^2 = (PQ)^2 + (QR)^2}}

 \sf{(200)^{2} = (4x)^{2} + (3x)^{2}}

 \sf\to{40000 = (4x)^{2} \times + (3x) ^{2}  }

\sf\to{40000 = 16 {x}^{2} + 9 {x}^{2} }

\sf\to{40000 = 25 {x}^{2}}

\sf\to{ {x}^{2} = \cancel\frac{40000}{25}} \\

\sf\to{ {x}^{2} = 1600}

  \sf\to{ {x}^{2} = 1600}

\sf \pink{\large\to{x = 40}}

PQ = 4x = 4 × 40 = 160m^2

QR = 3x = 3 × 40 = 120m^2

A = l × b

A = PQ × QR

A = (160 × 120)m^2

A = 19200m^2

Therefore, area of the field is 19200m^2(Option b)

Attachments:
Similar questions