The ratio of maximum acceleration to maximum velocity of a particle performing simple harmonic motion is equal to--
A) amplitude
B) angular velocity
C) square of amplitude
D)square of angular velocity
Answers
The displacement of a particle executing simple harmonic motion (SHM) is given by,
where is the amplitude and is the angular displacement.
But,
where is the angular speed and is the time. Hence the displacement is,
Then the velocity will be,
But since
From (1),
And the acceleration will be,
From (1),
Negative sign shows that retardation occurs with displacement. However the magnitude of acceleration is,
Maximum velocity is attained by the particle at mean position, i.e., when
Then from (2),
And maximum acceleration is attained by the particle at extreme positions, i.e., when
Then from (3),
Hence the ratio of maximum acceleration to maximum velocity is,
I.e., the ratio is equal to angular velocity.
The displacement of a particle executing simple harmonic motion (SHM) is given by,
\longrightarrow\sf{x=A\sin\theta}⟶x=Asinθ
where \sf{A}A is the amplitude and \thetaθ is the angular displacement.
But,
\sf{\theta=\omega t}θ=ωt
where \omegaω is the angular speed and \sf{t}t is the time. Hence the displacement is,
\longrightarrow\sf{x=A\sin(\omega t)\quad\quad\dots(1)}⟶x=Asin(ωt)…(1)
Then the velocity will be,
\longrightarrow\sf{v=\dfrac{dx}{dt}}⟶v=
dt
dx
\longrightarrow\sf{v=\dfrac{d}{dt}[A\sin(\omega t)]}⟶v=
dt
d
[Asin(ωt)]
\longrightarrow\sf{v=A\omega\cos(\omega t)}⟶v=Aωcos(ωt)
But since \sf{\sin^2\alpha+\cos^2\alpha=1,}sin
2
α+cos
2
α=1,
\longrightarrow\sf{v=A\omega\sqrt{1-\sin^2(\omega t)}}⟶v=Aω
1−sin
2
(ωt)
\longrightarrow\sf{v=\omega\sqrt{A^2-A^2\sin^2(\omega t)}}⟶v=ω
A
2
−A
2
sin
2
(ωt)
\longrightarrow\sf{v=\omega\sqrt{A^2-(A\sin(\omega t))^2}}⟶v=ω
A
2
−(Asin(ωt))
2
From (1),
\longrightarrow\sf{v=\omega\sqrt{A^2-x^2}\quad\quad\dots(2)}⟶v=ω
A
2
−x
2
…(2)
And the acceleration will be,
\longrightarrow\sf{a=\dfrac{dv}{dt}}⟶a=
dt
dv
\longrightarrow\sf{a=\dfrac{d}{dt}[A\omega\cos(\omega t)]}⟶a=
dt
d
[Aωcos(ωt)]
\longrightarrow\sf{a=-A\omega^2\sin(\omega t)}⟶a=−Aω
2
sin(ωt)
From (1),
\longrightarrow\sf{a=-\omega^2x}⟶a=−ω
2
x
Negative sign shows that retardation occurs with displacement. However the magnitude of acceleration is,
\longrightarrow\sf{|a|=\omega^2x\quad\quad\dots(3)}⟶∣a∣=ω
2
x…(3)
Maximum velocity is attained by the particle at mean position, i.e., when \sf{x=0.}x=0.
Then from (2),
\longrightarrow\sf{v_{max}=\omega\sqrt{A^2-0^2}}⟶v
max
=ω
A
2
−0
2
\longrightarrow\sf{v_{max}=A\omega}⟶v
max
=Aω
And maximum acceleration is attained by the particle at extreme positions, i.e., when \sf{x=A.}x=A.
Then from (3),
\longrightarrow\sf{a_{max}=A\omega^2}⟶a
max
=Aω
2
Hence the ratio of maximum acceleration to maximum velocity is,
\longrightarrow\sf{\dfrac{a_{max}}{v_{max}}=\dfrac{A\omega^2}{A\omega}}⟶
v
max
a
max
=
Aω
Aω
2
\longrightarrow\sf{\underline{\underline{\dfrac{a_{max}}{v_{max}}=\omega}}}⟶
v
max
a
max
=ω
I.e., the ratio is equal to angular velocity.