Math, asked by pradeephimalnaidu137, 3 months ago

The ratio of number of red marbles to blue marbles is 5:4. If the number of blue marbles are 212, then the number red marbles are

Answers

Answered by BrainlyRish
11

❒ Let's consider the number of red marbles and blue marbles be 5x and 4x respectively.

Given that ,

  • The total number of blue Marbles are 212 .

Therefore,

 \bigstar \:\: \bf  \bigg\lgroup Blue Marbles = Total \:no. \:of \:blue\:Marbles \bigg\rgroup \: \\ \\

Or ,

 \star \:\: \bf  {\overline{\underline {New\:Formed \:Equation \:: 4x = 212 \:}}} \\ \\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Solving \: for \: x \ \::}}\\

\qquad \longmapsto \sf{ 4x = 212}\\ \\

\qquad \longmapsto \sf{ x =\cancel {\dfrac{212}{4}}}\\ \\

\qquad \longmapsto \purple{\frak{\underline { x = 53}}}\:\:\bigstar\\ \\

Therefore,

  • The value of x is 53

⠀⠀⠀⠀Finding no. of Red Marbles:

As , We know that

  • Red Marbles = 5x

Here ,

  • \qquad \longmapsto \sf{ x = 53}\\ \\

Therefore,

  • \qquad \longmapsto \sf{ Red \:Marbles \:= 5 x }\\ \\

  • \qquad \longmapsto \sf{ Red \:Marbles \:= 5 (53) }\\ \\

  • \qquad \longmapsto \frak{\purple{\underline{ Red \:Marbles \:= 265 }}}\\ \\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm { The\:No.\;of\: Red\:Marbles \:are\:\bf{265\: }}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Answered by CɛƖɛxtríα
220

Given:-

  • There are 212 blue marbles.
  • The number of red marbles and blue marbles are in the ratio 5 : 4.

To find:-

  • The number of red marbles.

Solution:-

Let's assume that,

◍ The number of red marbles be 5f.

◍ The number of blue marbles be 4f.

As we're given with the number of blue marbles, we can write it as:

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underline{ \boxed{\sf{4f = 212}}}

Now by solving this equation, we get:

 \longmapsto{ \sf{4f = 212}} \\  \\  \longmapsto{ \sf{f =  \dfrac{ \cancel{212}}{ \cancel{4}} }} \\  \\   \longmapsto \underline{ \underline{ \sf \pmb{f = 53}}}

So, on substituting this value in the expression formed for number of red marbles, i.e.,

 \:  \:   \:  \:  \:  \:  \:  \:  \:  \: \Rightarrow{ \sf{5f}} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \Rightarrow{ \sf{5(53)}} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \Rightarrow  \underline {\boxed{ \sf \pmb{ \red{265}}}}

Verification:-

The simplified form of the fraction of number of red marbles by the number of blue marbles equals the ratio of their numbers. Let's take the L.H.S. value as 5 : 4 and R.H.S. value as:

 \longmapsto{ \sf{ \bigg( \dfrac{Number \: of \:  {red} \: marbles}{Number \: of \:  {blue} \: marbles}  \bigg)}} \\  \\  \longmapsto{ \sf{ \frac{265}{212} }} \\  \\  \longmapsto{ \sf{ \frac{ \cancel{53} \times 5}{ \cancel{53} \times  4} }} \\  \\  \longmapsto{ \sf{ \frac{5}{4} =   \underline{ \overline{\pmb{5 :4} }}}}

Since L.H.S. equals R.H.S., the answer which was obtained by us is correct!

_______________________________________

Similar questions