the ratio of orbital radii of two satellites of a planet is 1:2.what is the ratio of their time period?
Answers
Answered by
2
Answer:
Explanation:
Given The ratio of orbital radii of two satellites of a planet is 1:2.what is the ratio of their time period?
We know that from Kepler’s law we get
T^2 is proportional to a^3 where a is the length of semi major axis.
T1^2 / T2^2 = a1^3 / a2^3
T1/T2 = √(a1 / a2)^3
T1 / T2 = (a1 / a2)^3/2
T1 / T2 = (1 / 2)^3/2
= 1 / (√2)^3
= 1 / 2√2
Answered by
0
Answer:
Explanation:
According to the question,
The ratio of orbital radii of two satellites of a planet is 1:2.
That is
From Kepler's law, we know that
Square of time period is Proportional to the cube of the length of semi major axis that is radius. That is
T² ∝ r³
Now,
Hence, the ratio of their time period .
Similar questions
Math,
6 months ago
English,
6 months ago
Geography,
1 year ago
Physics,
1 year ago
Computer Science,
1 year ago