The ratio of peak value and r.m.s value of an alternating current is
(a) 1
(b) ![\frac{1}{2} \frac{1}{2}](https://tex.z-dn.net/?f=+%5Cfrac%7B1%7D%7B2%7D)
(c) √2
(d) 1/√2
Answers
Answered by
1
answer : option (d) ![\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}](https://tex.z-dn.net/?f=+%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D)
explanation : we know an important formula
![\quad\boxed{\bf{I_{rms}=\frac{I_0}{\sqrt{2}}}} \quad\boxed{\bf{I_{rms}=\frac{I_0}{\sqrt{2}}}}](https://tex.z-dn.net/?f=%5Cquad%5Cboxed%7B%5Cbf%7BI_%7Brms%7D%3D%5Cfrac%7BI_0%7D%7B%5Csqrt%7B2%7D%7D%7D%7D)
where
denotes root mean square value of alternating current.
denotes peak value of alternating current.
now,![I_{rms}=\frac{I_0}{\sqrt{2}} I_{rms}=\frac{I_0}{\sqrt{2}}](https://tex.z-dn.net/?f=I_%7Brms%7D%3D%5Cfrac%7BI_0%7D%7B%5Csqrt%7B2%7D%7D)
or,![\frac{I_{rms}}{I_0}=\frac{1}{\sqrt{2}} \frac{I_{rms}}{I_0}=\frac{1}{\sqrt{2}}](https://tex.z-dn.net/?f=%5Cfrac%7BI_%7Brms%7D%7D%7BI_0%7D%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D)
hence, The ratio of peak value and r.m.s value of an alternating current is 1/√2
explanation : we know an important formula
where
now,
or,
hence, The ratio of peak value and r.m.s value of an alternating current is 1/√2
Similar questions