Math, asked by RitikaDoshi5832, 1 year ago

The ratio of radii of gyration of a spherical shell and solid sphere

Answers

Answered by CarlynBronk
0

Let R_{1} ,R_{2} represent radii of spherical shell.

R_{1} >R_{2}

Radii of spherical shell= R_{1} -R_{2}

Volume of spherical shell= \frac{4}{3}\pi [(R_{1})^{3}-(R_{2})^{3}]

Formula for radii of gyration of Spherical shell=

                            \frac {1}\text { Volume of spherical shell}\times [\int_{R_{1}}}^{R_{2}}}4\times\pi\times r^{4} dr]

As,    \int r^{4} dr=\frac{r^{5}}{5}

Radii of gyration of spherical shell=\frac{3}{5}\times \frac {R_{2}^{5}-R_{1}^{5}}{R_{2}^{3}-R_{1}^{3}}

Volume of solid sphere of radius R is \frac{4}{3}\pi R^{3}

Ratio of radii of gyration of a spherical shell and solid sphere=

                            \frac{9}{20}\times \frac{1}{\pi\times R^{3}}\times \frac {R_{2}^{5}-R_{1}^{5}}{R_{2}^{3}-R_{1}^{3}}

Similar questions