The ratio of radii of rwo spheres is 2:3,when they are dropped in a viscous liquid the ratio of their terminal speeds is
Answers
Answer:
Terminal velocity
v= 9η 2gr 2
(ρ−σ)
(ρ−σ)
(ρ−σ)
- (ρ−σ) where η and ρ is the viscosity of liquid and density of material of sphere, respectively
⟹ v∝r 2
2
2 Given : r 1= R
r 2 =3R
- Thus ratio of velocities
v 2
2
2
2 v
2 v 1
2 v 1
2 v 1
2 v 1
2 v 1 =
2 v 1 = r
2 v 1 = r 2
2 v 1 = r 22
2 v 1 = r 22
2 v 1 = r 22
2 v 1 = r 22 r
2 v 1 = r 22 r 1
2 v 1 = r 22 r 12
2 v 1 = r 22 r 12
2 v 1 = r 22 r 12
2 v 1 = r 22 r 12
2 v 1 = r 22 r 12 =
2 v 1 = r 22 r 12 = 9R
2 v 1 = r 22 r 12 = 9R 2
2 v 1 = r 22 r 12 = 9R 2
2 v 1 = r 22 r 12 = 9R 2 R
2 v 1 = r 22 r 12 = 9R 2 R 2
2 v 1 = r 22 r 12 = 9R 2 R 2
2 v 1 = r 22 r 12 = 9R 2 R 2
2 v 1 = r 22 r 12 = 9R 2 R 2 =
2 v 1 = r 22 r 12 = 9R 2 R 2 = 9
2 v 1 = r 22 r 12 = 9R 2 R 2 = 91
2 v 1 = r 22 r 12 = 9R 2 R 2 = 91
2 v 1 = r 22 r 12 = 9R 2 R 2 = 91
2 v 1 = r 22 r 12 = 9R 2 R 2 = 91 ⟹ v
2 v 1 = r 22 r 12 = 9R 2 R 2 = 91 ⟹ v 1
2 v 1 = r 22 r 12 = 9R 2 R 2 = 91 ⟹ v 1
2 v 1 = r 22 r 12 = 9R 2 R 2 = 91 ⟹ v 1 =v
2 v 1 = r 22 r 12 = 9R 2 R 2 = 91 ⟹ v 1 =v 2
2 v 1 = r 22 r 12 = 9R 2 R 2 = 91 ⟹ v 1 =v 2
2 v 1 = r 22 r 12 = 9R 2 R 2 = 91 ⟹ v 1 =v 2 =1:9