Math, asked by kirilkumar7000, 1 year ago

The ratio of radii of two circles are in the ratio of 1:2 what will the ratio of the area

Answers

Answered by Brainly100
6

GIVEN :-

Radii of two circles are in ratio 1:2

TO FIND :- Ratios of their areas

FORMULA :-

ar.(circle) = \pi {r}^{2}

SOLUTION :-

Let radius of smaller circle be 'r'

Radius of larger circle will be ' 2r '

Ratio of areas of two circle

= Area of circle 01 / Area of circle 02

 \frac{ \pi {r}^{2} }{\pi {(2r)}^{2} } \\  \\  \\  =  \frac{\pi  {r}^{2} }{\pi4 {r}^{2} }  \\  \\  \\  =  \boxed{ \frac{1}{4} }

Therefore, ratio of their areas is 1:4

ADDITIONAL INFORMATION

In case of perimeters of circles,

Ratio of radius = Ratio of perimeter

In case of areas of circles,

(Ratio of radius)^ 2 = Ratio of Area

Answered by BoyBrainly
3

 \large{ \fbox{ \fbox{ \bold{Given :- \: }}}}

 \to  \:  \:  \: \bold{Radii \:  Of \:  Two \:  Circles \:  Are \:  In \:  Ratio \:  1 : 2 \: }

 \large{ \fbox{ \fbox{ \bold{To \:  Find :- \: }}}}

 \to \:  \:  \bold{ \frac{ \:  \:  \: Area  \: Of \:  Smaller \:  Circle  \: \:  }{ \:  \:  \: Area \:  Of \:  Larger \:  Circle   \: \: }  = \: \:   ? }</p><p>

  \large{\fbox{ \fbox{ \bold{Solution :- \: }}}}

 \large{ \bold{ \underline{ \: Let \:   , \:  \: }}}

 \to \bold{Radius \:  Of  \: Smaller  \: Circle = r  \:  \: }  \\  \to \bold{Radius \:  Of  \: Larger \:  Circle = 2r \: }

 \large{ \bold{ \underline{We \:  Know  \: That  \: ,</p><p> \:  \:  \: }}}

 \huge{ \fbox{ \fbox{ \bold{Area \:  Of  \: Circle \:  \:  = \pi {r}^{2} }}}}

 \large{ \bold{ \underline{So \:  ,  \:  \: }}}

 \implies \:  \bold{ \frac{ \:  \:  \: Area  \: Of \:  Smaller \:  Circle  \: \:  }{ \:  \:  \: Area \:  Of \:  Larger \:  Circle   \: \: }} \\ \\   \implies \:  \:  \frac{\pi {(r)}^{2} }{\pi {(2r)}^{2} }  \\  \\  \implies \:  \:  \frac{\pi {r}^{2} }{\pi4 {r}^{2} }  \\  \\  \implies \:  \:  \frac{1}{4}

 \bold{ \underline{Hence \:  , \: \:  Ratio \:  Of \: Their  \: Areas \:  Is \:  1 : 4   \: }}

Similar questions