Math, asked by sparshbhai22, 1 year ago

The ratio of radii of two circles is 5:9.
the ratio of their circumferences?​

Answers

Answered by dc1452044
10

Answer:

let radii (r) of first circle=5x

let radii (R) of second circle=6x. ratio of two circles = circumference of first circle/circumference of second circle

=2Πr/2ΠR

=2Π5x/2Π9x

= 5/9

= 5:9

Answered by lAnniel
20

\huge\rm\underline\purple{Question :-}

The ratio of the radii of two circle is 5:9. Find the ratio of their circumferences.

\huge\rm\underline\purple{Answer :-}

\green{\underline\bold{Given,}}

  • Ratio of the radii of two circle is 5:9

\sf Now\begin{cases} &\sf{Let\;the\;radius\; of \;the\;first\;circle \;be\; =\be{r1}}\\&\sf{Let\;the\;radius\;of\;the\;second\;circle\;be =\bf{r2}}\end{cases}\\ \\

\blue{\underline\bold{We\:know,}}

\boxed{ \sf \pink{ Circumference\: of\: the \: circle \: =\: 2Πr}}

\orange{\underline\bold{For\:the\:first\:circle,}}

✏ C1 = 2Πr1

\orange{\underline\bold{For\:the\:second\:circle,}}

✏ C2 = 2Πr2

✯Therefore,

\frac{C1}{C2}=\frac{2Πr1}{2Πr2}

\frac{r1}{r2}=\frac{5}{9}

\red{\underline\bold{ ∴ \:Ratio\:of\:their\:circumference}}=\frac{5}{9}

= 5:9

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions