Math, asked by abhigna9920, 9 months ago

the ratio of radiii of two spheres is2:3 find the ratio of their surface areas and volumes​

Answers

Answered by Anonymous
58

 \large\bf\underline {To \: find:-}

  • We need to find the ratio surface areas and volumes of both spheres .

 \large\bf\underline{Given:-}

  • Ratio of radii of both spheres = 2:3

 \huge\bf\underline{Solution:-}

Let the of radius of both spheres be 2r and 3r

  \mid\underline{ \boxed{  \textbf{Surface area of sphere} =  \bf \: 4 \pi {r}^{2} }} \mid

Surface area of 1st sphere having Radius 2r

\hookrightarrow \tt \:4 \times  \pi \times   {(2r)}^{2}  \\  \\ \hookrightarrow \tt \:4 \times  \pi \times 4 {r}^{2}  \\  \\ \hookrightarrow \tt \:16 \pi {r}^{2} ....(1)

Surface area of 2nd sphere having Radius 3r

\hookrightarrow \tt \:4 \times  \pi \times   {(3r)}^{2}  \\  \\ \hookrightarrow \tt \:4 \times  \pi \times 9 {r}^{2}  \\  \\ \hookrightarrow \tt \:36 \pi {r}^{2} ....(2)

Now,

✝️Ratio of two Spheres :-

\dashrightarrow \tt \:ratio =   \cancel\frac{16 \pi {r}^{2} }{36 \pi {r}^{2} }  \\  \\ \dashrightarrow \tt \:ratio =  \frac{4}{9}  \\  \\ \dashrightarrow  \red{\bf\:ratio = 4  : 9}

Now,

  \mid\underline{ \boxed{  \textbf{Volume of sphere = }   \bf \:  \frac{4 \pi {r}^{3} }{3} }} \mid

Volume of 1st sphere having Radius 2r

\hookrightarrow \tt \:volume =    \:  \frac{4 \times  \pi  \times {(2r)}^{3} }{3}  \\  \\ \hookrightarrow \tt \:volume =    \:  \frac{4 \times  \pi  \times {8r}^{3} }{3} \\  \\ \hookrightarrow \tt \:volume =    \:   \frac{32 \pi {r}^{3} }{3}

Volume of 2nd sphere having Radius 3r

\hookrightarrow \tt \:volume =    \:  \frac{4 \times  \pi  \times {(3r)}^{3} }{3}  \\  \\ \hookrightarrow \tt \:volume =    \:  \frac{4 \times  \pi  \times {27r}^{3} }{3} \\  \\ \hookrightarrow \tt \:volume =    \:   \frac{108 \pi {r}^{3} }{3}

Now,

✝️Ratio of volumes of both spheres :-

 \tt \dashrightarrow \:  ratio = \frac{ \frac{ \frac{32 \pi {r}^{3} }{3} }{108 \pi {r}^{3} } }{3}  \\  \\ \tt \dashrightarrow \:  ratio = \frac{32 \pi {r}^{3} }{ \cancel3}  \times  \frac{ \cancel3}{108 \pi {r}^{3} }  \\  \\ \tt \dashrightarrow \:  ratio = \cancel \dfrac{32 \pi {r}^{3} }{108 \pi {r}^{3} }  \\  \\ \tt \dashrightarrow \:  ratio = \frac{8}{27}  \\  \\  \red{\bf \dashrightarrow \:  ratio =8 : 27}

Hence,

❥Ratio of surface area of Spheres = 4:9

❥Ratio of volumes of Spheres = 8:27

\rule{200}3

Answered by Cynefin
36

━━━━━━━━━━━━━━━━━━━━

Required Answer:

GiveN:

  • Ratio of the radii of the two spheres = 2:3

✏ To FinD:

  • Ratio of their surface areas.
  • Ratio of their volumes.

━━━━━━━━━━━━━━━━━━━━

How to solve?

To find the ratio between the surface areas and volumes respectively of two spheres, we need to know the formula of Surface area and Volume of sphere.

Here are the formulae,

 \large{ \bold{ \underline{ \underline{ \red{Surface \: area \: of \: sphere}}}}} \\  \\  \large{ =  \boxed{ \rm{4\pi \:  {r}^{2} }}} \\  \\  { \rm{where \: r \: is \: the \: radius \: of \: sphere}}

And,

 \large{ \bold{ \underline{ \underline{ \red{Volume \: of \: sphere}}}}} \\  \\  \large{ =  \boxed{ \rm{ \frac{4}{3} \pi \:  {r}^{3} }}} \\  \\  \rm{where \: r \: is \: the \: radius \: of \: sphere}

So, Using formulae, we can find the respective ratio.

━━━━━━━━━━━━━━━━━━━━

Solution:

Given, Ratio of radius of two spheres = 2:3

  • Let the two radius he 2x and 3x.

So, this will help in finding the ratio of surface area when we use the formula,

Ratio of surface area of spheres,

 \large{ \rm{  \longrightarrow  \frac{4\pi (r_1) {}^{2} }{4\pi (r_2) {}^{2} } }} \\  \\ \large{ \rm{  \longrightarrow  \frac{(r_1) {}^{2} }{(r_2) {}^{2} } \: \: \: (\rm{\green{4\pi \: cancels) }}}} \\  \\  \sf{ \dag \: { \purple{we \: have \: r_1 = 2x \: and \: r_2 = 3x}}} \\  \\ \large{ \rm{  \longrightarrow  \:  \frac{ {(2x)}^{2} }{ {(3x)}^{2} } }} \\  \\ \large{ \rm{  \longrightarrow  \:  \frac{4 {x}^{2} }{9 {x}^{2} } }}  \\  \\ \large{ \rm{  \longrightarrow  \:  \frac{4}{9} }}

✏ Hence, our required ratio of surface area = 4 : 9

━━━━━━━━━━━━━━━━━━━━

Ratio of volume of the spheres,

\large{ \rm{  \longrightarrow  \:  \frac{ \dfrac{4}{3} \pi {r_1}^{3} }{ \frac{4}{3}\pi {r_2}^{3}  } }} \\  \\ \large{ \rm{  \longrightarrow  \:  \frac{ {r_1}^{3} }{ {r_2}^{3} }\: \: \:  (\rm{\green{\frac{4}{3}\pi \: cancels}) }}} \\  \\ { \rm{   \dag \: { \purple{we \: have \: radius \: of \: two \: spheres \: 2x \: and \: 3x}}}} \\  \\ \large{ \rm{  \longrightarrow  \:  \frac{ {(2x)}^{3} }{ {(3x)}^{3} } }} \\  \\ \large{ \rm{  \longrightarrow  \:  \frac{8 {x}^{3} }{27 {x}^{3} } }} \\  \\ \large{ \rm{  \longrightarrow  \:  \frac{8}{27} }}

✏ Hence, our required ratio of volumes = 8 : 27

 \large{ \therefore{ \underline{ \underline{ \pink{ \rm{Hence \: solved \:  \dag}}}}}}

━━━━━━━━━━━━━━━━━━━━

Similar questions