Physics, asked by roshanlal5800, 11 months ago

The ratio of spring constant of two springs is 2:3 .What is the ratio of potential energy of springs if the are stretched by same force??

Answers

Answered by NehaKari
4

Given :

The ratio of spring constant of two springs is 2:3 and the springs are stretched by same force.

To Find :

The ratio of potential energy of springs

Solution :

 F = kx (where k = spring constant, and x = Displacement of the spring from its equilibrium position)

Let the spring constants for two springs be 2a and 3a respectively.

For spring 1,

F = K_{1} x_{1}

or, x_{1} = \frac{F}{K_{1} }

∴   x_{1} = \frac{F}{2a}

For spring 2,

F = K_{2} x_{2}

or, x_{2} = \frac{F}{K_{2} }

∴   x_{2} = \frac{F}{3a}

We know, Potential Energy in a stretched spring = \frac{1}{2}  Kx^{2}

Potential Energy stored in spring 1 (U_{1}) = \frac{1}{2} K_{1} x_{1} ^{2}

                                                          U_{1}   =  \frac{1}{2} *2a * (\frac{F}{2a}) ^{2}

                                                          U_{1}   = \frac{F^{2}a }{4a^{2} }

                                                          U_{1}   = \frac{F^{2} }{4a}

Potential Energy stored in spring 2 (U_{2}) = \frac{1}{2} K_{2} x_{2} ^{2} }

                                                           U_{2}  = \frac{1}{2} *3a * (\frac{F}{3a}) ^{2}

                                                           U_{2}  = \frac{F^{2} }{6a}

∴    U_{1}  :  U_{2}

or,  \frac{F^{2} }{4a}  :  \frac{F^{2} }{6a}

∴    3   :   2

∴  The ratio of potential energy of springs when they are stretched by same force is 3:2.

Answered by hotelcalifornia
4

Given:

Ratio of spring constants of two springs = 2:3

To find:

Ratio of Potential energy of the springs.

Solution:

Step 1

According to the question, two springs with spring constant k_{1} and k_{2} act under forces F_{1} and F_{2} to produce extensions x_{1} and x_{2} in the springs.

According to Stokes Law, for a force on spring, we have

F=-kx

Where, k is the spring constant.

For spring 1, we have

F_{1}= k_{1} x_{1}      (i)

Similarly for spring 2

F_{2}=k_{2} x_{2}     (ii)

But, we have been given that the springs act under the same force

Hence, F_{1} =F_{2}  , therefore, equating both the values of forces we get

k_{1} x_{1}= k_{2} x_{2}

\frac{k_{1} }{k_{2} }= \frac{x_{2} }{x_{1} }

We know, \frac{k_{1} }{k_{2} }= \frac{2}{3}

Therefore, \frac{x_{1} }{x_{2} }= \frac{3}{2}  (iii)

Step 2

Now,

The Potential energy (P.E.) of a stretched spring is given by U=\frac{1}{2}kx^{2}  

Hence,

P.E. of spring 1 is  U_{1} =\frac{1}{2}k_{1}x_{1} ^{2}    ; and

P.E. of spring 2 is U_{2} =\frac{1}{2}k_{2}x_{2} ^{2}

For the ratio of Potential energies of the 2 springs,

\frac{U_{1} }{U_{2} }= \frac{\frac{1}{2} k_{1} x_{1} ^{2} }{\frac{1}{2}k_{2}x_{2}^{2}    }   ; or

\frac{U_{1} }{U_{2} }= \frac{k_{1} x_{1}^{2}  }{k_{2} x_{2}^{2}  }  

We know, \frac{k_{1} }{k_{2} }= \frac{2}{3}  and  \frac{x_{1} }{x_{2} }= \frac{3}{2}

Substituting this value in the equation, we get

\frac{U_{1} }{U_{2} }=\frac{k_{1} }{k_{2} }(\frac{x_{1} }{x_{2} } )^{2}

Hence,

\frac{U_{1} }{U_{2} }=\frac{2}{3}(\frac{3}{2} )^{2}

Therefore,

\frac{U_{1} }{U_{2} }=\frac{3}{2}

Final answer:

Hence, the ratio of potential energy of the springs will be 3:2.

Similar questions