Math, asked by Sidmariya, 5 months ago

The ratio of the ages of Seeta and Geeta
is 2:7. After 6 years, the ratio of their ages
will be 1:2. What is the difference in their
present ages?
8 years
9 years
10 years
11 years​

Answers

Answered by Anonymous
8

GiveN:-

The ratio of the ages of Seeta and Geeta is 2:7. After 6 years, the ratio of their ages will be 1:2.

To FinD:-

Difference in their present ages.

SolutioN:-

Let the present age of Seeta be 2x and Geeta be 7x.

After 6 years their ages will be,

  • Seeta = 2x + 6
  • Geeta = 7x + 6
  • Their ratio is 1:2

According to the question,

:\large\implies{\sf{\dfrac{2x+6}{7x+6}=\dfrac{1}{2}}}

By cross multiplying,

:\large\implies{\sf{2(2x+6)=7x+6}}

:\large\implies{\sf{4x+12=7x+6}}

:\large\implies{\sf{12-6=7x-4x}}

:\large\implies{\sf{6=3x}}

:\large\implies{\sf{\dfrac{6}{3}=x}}

:\large\implies{\sf{\dfrac{\cancel{6}}{\cancel{3}}=x}}

:\large\implies{\sf{2=x}}

\large\therefore\boxed{\bf{x=2.}}

Their present ages:-

  1. Seeta = 2x = 2 × 2 = 4 years
  2. Geeta = 7x = 7 × 2 = 14 years

Difference between their present ages:-

:\large\implies{\sf{Difference=14\:years-4\:years}}

\large\therefore\boxed{\bf{Difference=10\:years.}}

Difference between the present ages of Seeta and Geeta is 10 years.

Answered by Anonymous
3

 \huge \sf \underline \red{↝Answer : }

 \sf{ \boxed{ \underline{ \underline{ \green{ \tt{10years \: }}}}}}

 \huge \sf \underline \orange{↝To  \: Find : }

  • Different in their present ages.

 \huge \sf \underline \pink{↝Given : }

  • The ratio of the ages of seeta and Geeta is 2:7

  • After six years , the ratio of their ages will be 1 :2

 \huge \sf \underline \blue{↝solution : }

 \sf{Let \: the \: present \: age \: of \: seeta \: be \: x}

 \sf{Let \: the \: present \: age \: og \: geeta \: be \: x}

 \:  \:  \:  \:  \:  \:  \:  \:  \sf \underline{↝After \: 6 \: years : }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \ \sf{ \star \: seeta \: age \: will \: be \: 2x + 6}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \ \sf{ \star \: geeta \: age \: will \: be \: 7x + 6}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \ \sf{ \star \: ratio  \: will \: be \: 1 : 2}

 \sf \underline{so}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ \dfrac{2x + 6}{7x + 6} =  \dfrac{1}{2}}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf \underline{↝Now \: cross \: multiplication }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ ⇢2(2x + 6) = 7x + 6}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{⇢ 4x + 12 = 7x + 6}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ ⇢12 - 6 = 7x - 4x}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{⇢ 6 = 3x}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ ⇢x =  \dfrac{6}{3} }

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{⇢ x = 2}

 \sf \underline{↝Now  \:  their \:  present  \: ages ,}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \underline \red{⤁seeta \:  = 2x = 2 \times 2 = 4 \: years}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \underline \red{⤁geeta \:  = 7x = 7 \times 2 = 14\: years}

______________________________________

The difference in ages of seeta and Geeta is,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ \underline{14 - 4 = 10 \: years}}

 \sf \underline \green{ \therefore \: the \: difference \: between \: present \: age \: of \: seeta \: and \: geeta \: is \: 10 \: years}

  \sf \underline{ \therefore \: 10years}

Similar questions