Math, asked by sonu7195679, 10 months ago

The ratio of the ages of the father and the son
at present is 19:5. After 4 years the ratio will
become 3:1. What is the sum of the present
ages of the father and the son?
(A) 40
(B) 42
(C)48
(D) 52​

Answers

Answered by arti4156
4

let father's age=19x

let son's age=5x

After 4 years:

father's age=19x+4

son's age=5x+4

A.T.Q

19x+4/5x+4=3/1

19x+4=15x+12

4x=8

x=2

sum=19*2+5*2=38+10=48

Answered by krishnaanandsynergy
1

Answer:

We should find the sum of the present ages of the father and the son using given data. Answer: Option c: sum of the present ages of the father and the son is 48.

Step-by-step explanation:

  • Let as consider father's present age is F and son's present age is S.
  • The ratio of the ages of the father and the son at present is 19:5.

        That is,             \frac{F}{S}=\frac{19}{5}  

                                F=\frac{19S}{5}  -----------------(1)

  • After 4 years the ratio will become 3:1.  

                              \frac{F+4}{S+4}=\frac{3}{1}

                    (F+4)(1)=(S+4)(3)      

                           F+4=3S+12

                         F-3S=12-4=8 ----------------(2)

  • Now apply equation(1) into equation(2). Then we will get the value of F and S.

                       \frac{19S}{5}-3S=8

  • Take the L.C.M

                        \frac{19S-15S}{5}=8

                                \frac{4S}{5}=8

                                4S=8*5=40

                                  S=\frac{40}{4}

                 son's age S=10            

  • Now son's age apply in equation(2).That is,

                      F-3(10)=F-30=8      

                                   F=30+8  

            father's age   F=38

  • Sum of the present ages of the father and the son is add the father's age and son's age.

                             F+S=38+10=48

  • Final Answer: Option c: 48
Similar questions