Math, asked by radhikasri, 1 year ago

the ratio of the am and GM of two positive numbers a and b is M:N to show that a:b is equal to (m+√(m^2-n^2) :m -√(m^2 - n^2)
playing solve and get 50points ฅ'ω'ฅ ฅ'ω'ฅ ฅ'ω'ฅ​

Answers

Answered by Anonymous
6

ANSWER:-

Given:

The ratio of the A.M. & G.M. of two positive numbers a & b is M:N.

To prove:

Show that a:b equal to;

a \ratio b = (m +  \sqrt{ {m}^{2}  -  {n}^{2} } ) \ratio (m -  \sqrt{ {m}^{2}  -  {n}^{2} } )

Proof:

Let the two numbers be a & b.

A.M.= a+b/2 & G.M.= √ab

According to this question:

 \frac{a + b}{2 \sqrt{ab} }  =  \frac{m}{n} \\  Squaring \: both  \: sides \:, we \: get;\\  \\  =  >  \frac{( {a + b)}^{2} }{4(ab)}  =  \frac{ {m}^{2} }{ {n}^{2} }  \\  \\  =  > ( {a + b) }^{2}  =  \frac{4ab {m}^{2} }{ {n}^{2} }  \\  \\  =  > (a + b) =  \frac{2 \sqrt{ab}m }{n} ...............(1)

Using this in the identity;

(a-b)² = (a+b)² - 4ab, we get;

( {a - b)}^{2}  =  \frac{4ab {m}^{2} }{ {n}^{2} }  - 4ab =  \frac{4ab( {m}^{2} -  {n}^{2}  )}{ {n}^{2} }  \\  \\  =  > (a - b) =  \frac{2 \sqrt{ab}  \sqrt{ {m}^{2}   -  {n}^{2} } }{n} ..............(2)

Adding equation (1) & (2), we get;

2a =  \frac{2 \sqrt{ab} }{n} (m +  \sqrt{ {m}^{2}  -  {n}^{2} } ) \\  \\  =  > a =  \frac{ \sqrt{ab} }{n} (m +  \sqrt{ {m}^{2}  -  {n}^{2} } )

Substituting the value of a in eq.(1) we get;

b =  \frac{2 \sqrt{ab} }{n} m -  \frac{ab}{n} (m +  \sqrt{ {m}^{2}  -  {n}^{2} })  \\  \\  =  >  \frac{ \sqrt{ab} }{n} m -  \frac{ \sqrt{ab} }{n}  \sqrt{ {m}^{2} -  {n}^{2}  }  \\  \\  =  >  \frac{ \sqrt{ab} }{n} (m -  \sqrt{ {m}^{2} -  {n}^{2}  } ) \\ Therefore, \:  \:  a \ratio b \\  \\  =  >  \frac{a}{b}  = \frac{ \frac{ \sqrt{ab} }{n} (m +  \sqrt{ {m}^{2} -  {n}^{2}  } )}{ \frac{ \sqrt{ab} }{n} (m -  \sqrt{ {m}^{2} -  {n}^{2}  }) }  =  \frac{(m +  \sqrt{ {m}^{2} -  {n}^{2}  } )}{(m -  \sqrt{ {m}^{2}  -  {n}^{2} } )}  \\ Thus , \\  =  > a \ratio b = (m +  \sqrt{ {m}^{2}  -  {n}^{2} } ) \ratio (m -  \sqrt{ {m}^{2} -  {n}^{2}  })

Hence,

Proved.

Hope it helps ☺️

Answered by vaniviji06
0

Step-by-step explanation:

thanks for the points

they have aldready given the answer

so there is no use

Similar questions