Math, asked by prasadguturi553, 11 months ago

The ratio of the areas of a square and rectangle of length 4 cm and breadth is 3 cm is 4:3. the side of the square will be

Answers

Answered by karanjotgaidu
9

\huge\underline\bold\color{red}\mathfrak{Answer}

Area of square =

Area of rectangle = lb

We know the length and breadth of the rectangle. So we find its area.

Area = lb = 4×3 = 12 cm²

Now we know the ratio of the area of square and rectangle is 4:3

ie, : 12 = 4 : 3

/12 = 4/3

= 12×4/3

= 16

a = 16

a = 4 cm

Side of the square is 4 cm.

#answerwithquality

#BAL

#WMK

Answered by AshnoorpreetKaur
3

\:\:\:\dag\:{\underline{\underline{\mathfrak{\red{Given:-}}}}}

  • \textsf{Length of rectangle = 4cm}

  • \textsf{Breadth of rectangle = 3cm}

  • \sf{Area_{(square)} : Area_{(rectangle)} = 4:3} \\

\:\:\:\dag\:{\underline{\underline{\mathfrak{\orange{To\: Find:-}}}}}

  • \textsf{Length of side of square}  \\

\:\:\:\dag\:{\underline{\underline{\mathfrak{\blue{Solution:-}}}}}

\bigstar\:\:{\underline{\boxed{\sf{\purple{Area_{(rectangle)} = Length \times Breadth}}}}}

\:\:\::\implies\:\:\sf{Area_{(rectangle)} = 4 \times 3}

\:\:\::\implies\:\:\sf{Area_{(rectangle)} = 12cm^{2}}

\bigstar\:\:{\underline{\boxed{\sf{\purple{Area_{(square)} : Area_{(rectangle)} = 4 : 3}}}}}

\:\:\::\implies\:\:\sf{(side \times side) : (length\times breadth) = 4:3}

\:\:\::\implies\:\:\sf{x^{2} : 12 = 4 : 3}

\:\:\::\implies\:\:\sf{\dfrac{x^2}{12} = \dfrac{4}{3}}

\:\:\::\implies\:\:\sf{x^{2} = \dfrac{4}{3} \times 12}

\:\:\::\implies\:\:\sf{x^2 = \dfrac{48}{3}}

\:\:\::\implies\:\:\sf{x^2 = 16}

\:\:\::\implies\:\:\sf{\sqrt{x^2} = \sqrt{16}}

\:\:\::\implies\:\:\sf{x = \sqrt{16}}

\:\:\::\implies\:\:{\underline{\boxed{\mathfrak{\pink{x = 4\:cm}}}}}

Similar questions