Math, asked by hemava, 1 year ago

the ratio of the curved surface area to the total surface area of a right circular cylinder is 1:2. find the volume of the cylinder, if its total surface area is 616 cm2.

Answers

Answered by sam12a13
6
given, csa : tsa of cylinder = 1:2
2πrh / 2πr(r+h) = 1/2
h/(r+h) = 1/2
by cross multiplication, we get
2h = r+h
2h-h = r
therefore h=r
by calculating, we get height is equal to radius. then ratio of their height and radius is
height of cylinder : radius of cylinder = 1:1

sam12a13: Hi
sam12a13: Hello
hemava: yes im here
hemava: i try to answer it
sam12a13: Ok
sam12a13: Did u try or are u trying it
hemava: i trying it wait for some time
sam12a13: Ok
hemava: i had answered your question
sam12a13: Ok
Answered by xcristianox
8

We have curved surface area= 2π*r*h

we have the circular surface  area= 2πr²

ATQ        2πr(h+r)= 616      ---(1)

        and  2*2πrh= 2πrh+ 2πr²

                            ⇒      h=r

Substituting value of h in (1)

                 we have 4πr²=616

                              ⇒   r²=59

                              ⇒   r=7

Volume of the cylinder is

                             ⇒  πr².h= πr³

                           

                             ⇒ = πr³=1078cm³We have curved surface area= 2π*r*h

we have the circular surface  area= 2πr²

ATQ        2πr(h+r)= 616      ---(1)

        and  2*2πrh= 2πrh+ 2πr²

                            ⇒      h=r

Substituting value of h in (1)

                 we have 4πr²=616

                              ⇒   r²=59

                              ⇒   r=7

Volume of the cylinder is

                             ⇒  πr².h= πr³

                           

                             ⇒ = πr³=1078cm³We have curved surface area= 2π*r*h

we have the circular surface  area= 2πr²

ATQ        2πr(h+r)= 616      ---(1)

        and  2*2πrh= 2πrh+ 2πr²

                            ⇒      h=r

Substituting value of h in (1)

                 we have 4πr²=616

                              ⇒   r²=59

                              ⇒   r=7

Volume of the cylinder is

                             ⇒  πr².h= πr³

                           

                             ⇒ = πr³=1078cm³

Similar questions