Physics, asked by dharmesh4969, 11 months ago

The ratio of the distance cut in 5th and 3rd second to the speed starting at a constant acceleration of 8ms ^ -2 =​

Answers

Answered by Anonymous
2

\color{darkblue}\underline{\underline{\sf Given-}}

  • Distance cut in 5th and 3rd second to the speed starting at a Constant Acceleration 8m/

\color{darkblue}\underline{\underline{\sf To \: Find-}}

  • Ratio of Distance cut in 5th and 3rd seconds {\sf \left(\dfrac{s_5}{s_3}\right)}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\color{green}\underline{\underline{\sf Formula \: Used-}}

\color{violet}\blacksquare\underline{\boxed{\sf s_n=u+\dfrac{a}{2}(2n-1)}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Distance cut in 5th second

\implies{\sf s_5=0+\dfrac{8}{2}(2×5-1)}

\implies{\sf s_5=\dfrac{8}{2}×11}

\color{orange}\implies{\sf s_5=\dfrac{88}{2} }

Distance cut in 3rd second

\implies{\sf s_3=0+\dfrac{8}{2}(2×3-1)}

\implies{\sf s_3=\dfrac{8}{2}×1 }

\color{orange}\implies{\sf s_3=\dfrac{8}{2}}

\underline{\sf Ratio \: of \: distances-}

\implies{\sf \dfrac{s_5}{s_3}=\dfrac{\dfrac{88}{2}}{\dfrac{8}{2}} }

\implies{\sf \dfrac{s_5}{s_3}=\dfrac{88}{8}}

\implies{\sf \dfrac{s_5}{s_3}=\dfrac{11}{1}}

\color{red}\implies{\sf s_5:s_3=11:1}

\color{darkblue}\underline{\underline{\sf Answer-}}

Ratio of Distances is \color{red}{\sf s_5:s_3=11:1}

Similar questions