Math, asked by raghav373, 6 months ago

The ratio of the factorial of a number x to
the square of the factorial of another number, which when
increased by 50% gives the required number, is 1.25. Find
the number x.
(a) 6
(b) 5.
(c) 9
(d) None of these .
I want the steps not the answer , i have the answer as 6 but I want the steps​

Answers

Answered by Arceus02
16

\underline{\textbf{\textsf{ \purple{Solution}:- }}}

\sf{\\}

Let the first number be \sf{x}. This is the required number.

Let the second number be \sf{y}

\sf{\\}

The first step is to form a linear equation.

There is a relation given between x and y.

"Another number, increased by 50% gives required number"

On increasing y by 50% we get x

\sf{y + \dfrac{50}{100}y = x}

\longrightarrow \sf{y + \dfrac{y}{2} = x}

\longrightarrow \sf{ \dfrac{3}{2}y = x }

\longrightarrow \sf{y = \Big( \dfrac{2}{3} x \Big)}

\sf{\\}

Now, it is given that, ratio of factorial of x to square of factorial of y is 1.25

\sf{ \dfrac{ (x!) }{ { (y!) }^{2} } = 1.25 = \dfrac{5}{4} }

\longrightarrow \sf{x! = \dfrac{5}{4} {(y!)}^{2}}

\longrightarrow \sf{ (y!)^2 = \dfrac{4}{5} x!}

\longrightarrow \sf{ y! = \sqrt{ \dfrac{4}{5} x! } }

We have already found out that, \sf{y = \Big( \dfrac{2}{3} x \Big)}

So,

\longrightarrow \sf{ \Big(\dfrac{2}{3}x\Big)! = 2 \sqrt{ \dfrac{x!}{5} }}

Now, we have to put values from the options in the equation and see which value satisfies,

\underline{\texttt{ \red{Putting x = 6}:- }}

\underline{\textbf{ \pink{L.H.S}:- }}

\sf{\Big(\dfrac{2}{3}x\Big)!}

\longrightarrow \sf{ \Big(\dfrac{2}{3}\:\:6\Big)!}

\longrightarrow \sf{4!}

\longrightarrow \sf{24}

\underline{\textbf{ \pink{R.H.S}:- }}

 \sf{2\sqrt{ \dfrac{x!}{5}  }}

\longrightarrow \sf{2\sqrt{ \dfrac{6!}{5}  }}

\longrightarrow \sf{2 \sqrt{\dfrac{720}{5}}}

\longrightarrow \sf{2 \sqrt{144}}

\longrightarrow \sf{2 * 12}

\longrightarrow \sf{24}

\sf{\\}

Hence, \sf{L.H.S = R.H.S}

So the answer is,

\longrightarrow \underline{\underline{\sf{ \green{x = 6} }}}

Similar questions