Math, asked by Ramavtar928, 7 months ago

The ratio of the height of a pole and the length of its shadow is √3: 1, then the angle of elevation of the sun is _______.

Answers

Answered by alok3917
1

Answer:

tan o h\x

tan 30 =1 upon root 3

tano=tan 30

o= 30

Hope its helpful

Answered by MystícPhoeníx
5

Given:-

Ratio of height of a pole and the length of its shadow = √3 : 1

To Find:-

The angle of elevation of the sun .

Solution:-

It is given that the Ratio of the height of a pole is the Ratio of length of its shadow.

Ratio of Height : Ratio of shadow = √3:1

Or, AB:BC = √3:1

Or, AB/BC = √3/1

Or, AB/BC = 1/√3

Here ,we know that tan30° = 1/√3

Therefore ,the angle of elevation of the sun is 30°.

For More Information Refer to attachment !!

Additional Information !!

\Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 65^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $   \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}

Attachments:
Similar questions