The ratio of the kinetic energy to the total energy of an electron in a bohr orbit is.
Answers
Answered by
67
According to Bohr's theory,
Electrostatic force = centripetal force
K(Ze)e/r² = mv²/r
mv² = K(Ze)(e)/r
∴ Kinetic energy = 1/2 mv² = K(Ze)(e)/2r
And potential energy = F.dr = -K(Ze)(e)/r
so, Total energy = P.E + K.E = -K(Ze)(e)/2r
Kinetic energy of an electron in an orbit , K.E = K(Ze)(e)/2r
Total energy of an electron in an orbit , T.E = -K(Ze)(e)/2r
Hence, Ratio of K.E and T.E ={K(Ze)(e)/2r}/{-K(Ze)(e)/2r} = -1/1
∴ answer = -1 : 1
Electrostatic force = centripetal force
K(Ze)e/r² = mv²/r
mv² = K(Ze)(e)/r
∴ Kinetic energy = 1/2 mv² = K(Ze)(e)/2r
And potential energy = F.dr = -K(Ze)(e)/r
so, Total energy = P.E + K.E = -K(Ze)(e)/2r
Kinetic energy of an electron in an orbit , K.E = K(Ze)(e)/2r
Total energy of an electron in an orbit , T.E = -K(Ze)(e)/2r
Hence, Ratio of K.E and T.E ={K(Ze)(e)/2r}/{-K(Ze)(e)/2r} = -1/1
∴ answer = -1 : 1
Similar questions