Math, asked by kumar1938, 10 months ago

The ratio of the length and breadth of a rectangular field in 3 :2 the area of filed is 3 4 5 6 m2 the costing finishing and fild at the rate of rs 3 -50 per metre length and breadth of a rectangle find

Answers

Answered by Anonymous
3

\sf\blue{Correct \ Question:}

\sf{The \ ratio \ of \ the \ length \ and \ breadth}

\sf{of \ a \ rectangular \ field \ is \ 3:2. \ The}

\sf{area \ of \ field \ is \ 3456 \ m^{2}. \ The}

\sf{cost \ of \ fencing \ the \ field \ is \ Rs \ 3.50}

\sf{per \ metre. \ Find \ length \ and \ breadth \ of}

\sf{rectangle \ and \ cost \ for \ fencing \ the \ land.}

______________________________________

\sf\red{\underline{\underline{Answer:}}}

\sf{Length \ and \ breadth \ of \ rectangle \ are}

\sf{72 \ m \ and \ 48 \ m \ respectively,}

\sf{cost \ of \ fencing \ is \ Rs \ 840.}

\sf\orange{Given:}

\sf{\implies{Length \ and \ breadth \ of \ the}}

\sf{rectangle \ are \ in \ ratio \ of \ 3:2}

\sf{\implies{Area \ of \ rectangle=3456}}

\sf{\implies{Cost \ of \ fencing =Rs \ 3.50 \ per \ metre.}}

\sf\pink{To \ find:}

\sf{1. \ Length \ and \ b}

\sf{2. \ Cost \ of \ fencing \ the \ field.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Let \ the \ common \ factor \ be \ x.}

\sf{According \ to \ first \ condition.}

\sf{\implies{Length=3x}}

\sf{\implies{Breadth=2x}}

\sf{According \ to \ the \ second \ condition.}

\sf{Area \ of \ rectangle=Length\times \ Breadth}

\sf{\therefore{(3x)(2x)=3456}}

\sf{\therefore{6x^{2}=3456}}

\sf{x^{2}=\frac{3456}{6}}

\sf{\therefore{x^{2}=576}}

\sf{On \ taking \ square \ root \ of \ both \ sides}

\sf{x=24 \ or \ -24}

\sf{But, \ x \ can't \ be \ negative.}

\sf{\therefore{x=24}}

\sf{\therefore{Length=3(24)=72 \ m}}

\sf{\therefore{Breadth=2(24)=48 \ m}}

\sf{Perimeter=2(length+breadth)...formula}

\sf{=2(72+48)}

\sf{=2\times120}

\sf{=240 \ m}

\sf{Cost \ of \ fencing=240\times3.50}

\sf{\therefore{Cost \ of \ fencing=Rs \ 840}}

\sf\purple{\tt{\therefore{Length \ and \ breadth \ of \ rectangle \ are}}}

\sf\purple{\tt{72 \ m \ and \ 48 \ m \ respectively,}}

\sf\purple{\tt{cost \ of \ fencing \ is \ Rs \ 840.}}

Answered by Anonymous
7

 \large\bf\underline{Correct\: Question:-}

The ratio of the length and breadth of a rectangular field is 3 :2 and the area of filed is 3456m² If the cost of fencing the fild at the rate of Rs 3.50 per metre.

Then find the length, breadth and cost of fencing whole field.

 \large\bf\underline \pink{Given:-}

  • Ratio of Length and breadth = 3:2
  • Area of field = 3456m²

 \large\bf\underline \pink{To \: find:-}

  • length and breadth.
  • cost of fencing the field.

 \huge\bf\underline \green{Solution:-}

Let length and breadth of rectangle be 3x and 2x meters .

  \large\bf \: we \: know \: that \:

 \bf \pink{area \: of \: rectangle = length \times breadth}

 : \implies \rm \:3456 = 3x \times 2x \\  \\  : \implies \rm \:3456 = 6 {x}^{2}  \\  \\  : \implies \rm \: \frac{3456}{6}  =  {x}^{2}  \\  \\  : \implies \rm \:576 =  {x}^{2}  \\  \\  : \implies \rm\:x =  \sqrt{576} \\  \\  : \implies \rm \:x =  \pm24 \\  \\ : \implies \bf \red{ x = 24}

 \therefore \rm \: length \:  = 3 \times 24  =  \bf72\\ \:  \:  \: \:  \:   \rm  \: breadth = 2 \times 24 =  \bf \: 48

As, fencing can be done around the field

hence,

  \bf\pink{perimeter = 2(length + breadth)} \\  \\   \rm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 2(72 + 48) \\  \\   \rm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 2(120) \\  \\   \bf\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 240m

Now,

Rate of fencing = Rs 3.50 per meter

 \therefore \rm \: total \: cost \: of \: fencing \:  = 240 \times\:Rs 3.50 \\  \\  \bf   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \pink{  = Rs\:840}

Similar questions