The ratio of the length of sides of a triangular park is 2:3:4 ,perimeter of the park is 216m ,find the area of the park and find the length of sides of a triangular park
Answers
Step-by-step explanation:
Let the common factor be "x"
so,
we will let length of sides of park as " 2x, 3x and 4x".
SINCE,
PERIMETER OF A TRIANGLE = SUM OF ALL SIDES
THEREFORE,
2x+3x+4x = 216 m
= 9x = 216 m
= x = 24 m
SIDES OF TRIANGLE ARE :-
2x = 2×24 = 48
3x = 3×24 = 72
4x = 4×24 = 96
Semiperimeter = 216/2 = 108 m
AREA OF TRIANGLE = √(108(108-48)(108-72)(108-96)
= √(108(60)(36)(12)
= 5458.88 m² ( ANS )
WE HAVE FOUND AREA USING Herons formula
Required Answer :
Given :
- Ratio of the length of the sides of a triangular park = 2 : 3 : 4
- Perimeter of the park = 216 m
To find :
- Length of the sides of the park
- Area of the park
Solution :
Let us assume that :
⇒ First side of the park = 2x
⇒ Second side of the park = 3x
⇒ Third side of the park = 4x
Using formula,
- Perimeter of triangle = a + b + c
where,
- a, b and c denotes the three sides of the triangle
Substituting the given values :
⇒ 2x + 3x + 4x = 216
⇒ 9x = 216
⇒ x = 216/9
⇒ x = 24
Substituting the value of x in the sides of the triangular park :
⇒ First side = 2x
⇒ First side = 2(24)
⇒ First side = 48 m
⇒ Second side = 3x
⇒ Second side = 3(24)
⇒ Second side = 72 m
⇒ Third side = 4x
⇒ Third side = 4(24)
⇒ Third side = 96 m
Therefore, the three sides of the triangular park = 48 m, 72 m and 96 m.
Area of the park :
Using formula,
- Semi perimeter = Perimeter ÷ 2
Substituting the given values :
⇒ Semi perimeter = 216 ÷ 2
⇒ Semi perimeter = 108 m
Using formula,
- Heron's formula = √s(s - a)(s - b)(s - c)
Substituting the given values :
⇒ Area = √108(108 - 48)(108 - 72)(108 - 96)
⇒ Area = √108(60)(36)(12)
⇒ Area = 1673.13
Therefore, the area of the triangular park = 1673.13 m²