Math, asked by mason72905, 4 months ago

the ratio of the measure of the three angles in a triangle is 10:3:7 find the measure of the largest angle

Answers

Answered by Anonymous
0

Answer:-

The three angles are in ratio 10:3:7.

Let the angles be 10x , 3x, 7x.

We know that,

Sum of angles of triangle = 180°

10x + 3x + 7x = 180°

20x = 180°

x = 180°/20

x = 9...

Now,

To find the largest angle,

i.e.

10x = 10 × 9

=> 90° ..... ans

_________________________________________________

@Miss_Solitary ✌️

Answered by Anonymous
5

AnswEr-:

  • \underline{\frak{\red{ \dag{  The\:Measures \:of\:largest \:angle \:of\:Triangle \:is\: \bf{90^{⁰} } \: , respectively.  }}}}\\

Explanation-:

\mathrm {\bf{ Given-:}}\\

  • The ratio of the measure of the three angles in a triangle is 10:3:7.

\mathrm {\bf{ To\:Find-:}}\\

  • The measure of largest angle of triangle.

\sf{\bf{ \dag{ Solution \:of\:Question \:-:}}}\\

\mathrm {\bf{ Let's\:Assume\:-:}}\\

  • The measure of the three angles in a triangle be 10x , 3x and 7x .

Therefore ,

 \mathrm{\bf{\purple {Measures \:of\:Angles \:\: -:}}} \begin{cases} \sf{\blue{\angle \:A \:or\:First \:Angle \:\:= \frak{10x{⁰}}}} & \\\\ \sf{\pink{\angle \:B \:or\:Second\:Angle \:\: \:=\:\frak{3x^{⁰}}}} & \\\\ \sf{\red{\angle \:C \:or\:Third\:Angle \:\: \:=\:\frak{7x^{⁰}}}}\end{cases} \\\\

\underbrace{\underline { \mathrm { Understanding \:The\:Concept \:-:}}}\\

  • We have to find the largest angle of triangle when we have given the ratios of three angles of triangle.

  • As , We know that ,

  • The sum of all angles of triangles is 180⁰ or \sf{ \angle A + \angle B + \angle C  = 180^{⁰}}\\

  • By Putting we can get measures of all angles of triangles and from that ,

  • We can find the Largest angle of Triangle

__________________________________________

\sf{\bf{ \dag{ Finding \:Measures \:of\:all\:angle \:of\:Triangle \:-:}}}\\

As , We know that ,

  • \underline{\boxed{\star{\sf{\red{  The\:Sum\:of\:measures\:of\:all\:angles\:of\:triangle\:is\:180^{⁰}.}}}}}\\\\

Or ,

  • \underline{\boxed{\star{\sf{\red{\angle A + \angle B + \angle C  =  \:180^{⁰}.}}}}}\\\\

  •  \mathrm{\bf{\purple {Here \:\: -:}}} \begin{cases} \sf{\blue{\angle \:A \:or\:First \:Angle \:\:= \frak{10x{⁰}}}} & \\\\ \sf{\pink{\angle \:B \:or\:Second\:Angle \:\: \:=\:\frak{3x^{⁰}}}} & \\\\ \sf{\red{\angle \:C \:or\:Third\:Angle \:\: \:=\:\frak{7x^{⁰}}}}\end{cases} \\\\

Now , By Putting known Values -:

 \qquad\quad\quad \qquad\quad \qquad\quad\longmapsto{\sf{   \angle A + \angle B + \angle C  =  \:180^{⁰}.}}\\\\

 \qquad\quad\quad \qquad\quad \qquad\quad\longmapsto{\sf{   10x + 3x + 7x  =  \:180^{⁰}.}}\\\\

 \qquad\quad\quad \qquad\quad \qquad\quad\longmapsto{\sf{   13x + 7x  =  \:180^{⁰}.}}\\\\

 \qquad\quad\quad \qquad\quad \qquad\quad\longmapsto{\sf{   20x  =  \:180^{⁰}.}}\\\\

 \qquad\quad\quad \qquad\quad \qquad\quad\longmapsto{\sf{   x  =  \:\dfrac{180}{20}.}}\\\\

 \qquad\quad\quad \qquad\quad \qquad\quad\longmapsto{\sf{   x  =  \:\dfrac{\cancel {180}^{9}}{\cancel{20}}.}}\\\\

 \qquad\quad\quad \qquad\quad \qquad\quad\underline{\boxed{\pink{\frak{   x  =  \:9^{⁰}.}}}}\\\\

____________________________________________

Now , By Putting x = 9 -:

  •  \mathrm{\bf{\purple {Measures \:of\:Angles \:\: -:}}} \begin{cases} \sf{\blue{\angle \:A \:or\:First \:Angle \:\:= \frak{10x= 10 \times 9 = 90 {⁰}}}} & \\\\ \sf{\pink{\angle \:B \:or\:Second\:Angle \:\: \:=\:\frak{3x= 3 \times 9 = 27^{⁰}}}} & \\\\ \sf{\red{\angle \:C \:or\:Third\:Angle \:\: \:=\:\frak{7x= 7 \times 9 = 63^{⁰}}}}\end{cases} \\\\

Therefore,

  • \underline{\frak{\pink{ \dag{  \:Measures \:of\:all\:angle \:of\:Triangle \:are\: \bf{90^{⁰} , 27^{⁰} \:and\;63^{⁰}} \: , respectively.  }}}}\\

Hence ,

  • \underline{\frak{\red{ \dag{  The\:Measures \:of\:largest \:angle \:of\:Triangle \:is\: \bf{90^{⁰} } \: , respectively.  }}}}\\

______________________________________________

\large{\boxed{\mathrm {\bf{ |\:\:{\underline {More \:to\:Know \:-:}}\:\:| }}}}\\

Some Properties of Triangle-:

  • Triangle always has three sides and three angles .

  • The sum of all interior angles of Triangle is 180⁰

  • The sum of two sides of Triangles is always greater than the third side of triangle .

  • Formula for Area of Triangle-: ½ × Base × Height

_______________________________________________

Similar questions