Math, asked by anil960101, 3 months ago

The ratio of the measure of the three sides of a traingle is 4:2:3.and it's perimeter is 36 cm.Find the area of this traingle​

Answers

Answered by SarcasticL0ve
57

Given: Ratio of sides of a triangle is 4:2:3 & Perimeter of park is 36 cm.

To find: Area of triangle?

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

☯ Let the sides of triangle a, b and c be 4x, 2x and 3x respectively.

⠀⠀⠀⠀

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{Perimeter_{\;(triangle)} = Sum\:of\:\:it's\:all\:sides}}}}\\ \\

:\implies\sf a + b + c = 36\\ \\ \\ :\implies\sf 4x + 2x + 3x = 36\\ \\ \\ :\implies\sf 9x = 36\\ \\ \\ :\implies\sf x = \cancel{ \dfrac{36}{9}}\\ \\ \\ :\implies{\underline{\boxed{\frak{\purple{x = 4}}}}}\;\bigstar\\ \\

Therefore, Sides of triangle are,

⠀⠀⠀⠀

  • a = 4 × 4 = 16 cm
  • b = 2 × 4 = 8 cm
  • c = 3 × 4 = 12 cm

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

\underline{\bigstar\:\boldsymbol{Using\:Herons\:Formula\::}}\\ \\

\star\;{\boxed{\sf{\pink{Area_{\;(triangle)} = \sqrt{s(s - a)(s - b)(s - c)}}}}}\\ \\

Where,

:\implies\sf s = semi - perimeter\\ \\

:\implies\sf s = \dfrac{a + b + c}{2}\\ \\ \\ :\implies\sf s = \dfrac{16 + 8 + 12}{2}\\ \\ \\ :\implies\sf s = \cancel{\dfrac{36}{2}}\\ \\ \\ :\implies{\underline{\boxed{\frak{\purple{s = 18\:cm}}}}}\;\bigstar\\ \\

Now,

\sf We\:have \begin{cases} & \sf{a = \bf{16\:cm}}  \\ & \sf{b = \bf{8\:cm}} \\ & \sf{c = \bf{12\:cm}} \\ & \sf{s = \bf{18\:cm}} \end{cases}\\ \\

\dag\;{\underline{\frak{Putting\:values\:in\;formula,}}}\\ \\

:\implies\sf Area_{\;(triangle)} = \sqrt{18(18 - 16)(18 - 8)(18 - 12)}\\ \\ \\ :\implies\sf Area_{\;(triangle)} =  \sqrt{18 \times 2\times 10 \times 6}\\ \\ \\ :\implies\sf Area_{\;(triangle)} = \sqrt{(3)^2 \times (2)^2 \times 10 \times 6}\\ \\ \\ :\implies\sf Area_{\;(triangle)} = 3 \times 2 \sqrt{60}\\ \\ \\ :\implies\sf Area_{\;(triangle)} =  6 \sqrt{60}\\ \\ \\:\implies{\underline{\boxed{\frak{\purple{Area_{\;(triangle)} = 46.48\:cm^2}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Area\:of\:triangle\:is\: \bf{46.48\:cm^2}.}}}

Answered by MoodyCloud
58

Answer:

  • Area of triangle is 46.44 cm².

Step-by-step explanation:

Given :-

  • Ratio of measure of three sides of triangle is 4:2:3.
  • Perimeter of triangle is 36 cm.

To find :-

  • Area of triangle.

Solution :-

Let, Sides of triangle be 4x, 2x and 3x.

Perimeter of triangle = Sum of all sides

 \longrightarrow 4x + 2x + 3x = 36

 \longrightarrow 9x = 36

 \longrightarrow x = 36/9

 \longrightarrow x = 4

Sides :-

• 4x = 4×4 = 16

• 2x = 2×4 = 8

• 3x = 3×4 = 12

Sides of triangle are 16 cm, 8 cm and 12 cm.

Now,

Here, We do not have height of triangle.

We will use Heron's formula that is :

Area of triangle = s(s - a)(s - b)(s - c)

Where,

  • a, b and c are sides of triangle.
  • s is semi-perimeter of triangle.

So,

Semi-perimeter = Perimeter/2

 \longrightarrow Semi-perimeter = 36/2

 \longrightarrow Semi-perimeter = 18

Semi-perimeter of triangle is 18 cm.

Put all values in area formula :

 \longrightarrow Area = √18 × (18 - 16)(18 - 8)(18 - 12)

 \longrightarrow Area = √18 × 2 × 10 × 6

 \longrightarrow Area = √2 × 3 × 3 × 2 × 2 × 5 × 2 × 3

 \longrightarrow Area = 2 × 2 × 3 √5 × 3

 \longrightarrow Area = 12 × √15

 \longrightarrow Area = 12 × 3.87

 \longrightarrow Area = 46.44

Therefore,

Area of triangle is 46.44 cm².

Similar questions