Math, asked by kailaridilipkum3604, 4 months ago

The ratio of the measures of the angles of a triangle is 3:8:9. Find the measure of each angle.

Answers

Answered by rishavverma19
1

Answer:

Let the three angles be 3x, 8x and 9x

As we know that each triangle constitutes of 180°

so ATQ,

3x+8x+9x = 180°

20x = 180°

x=9°

.

.

Now substitute the value of x=9° in 3x, 8x and 9x

.

3x = 3(9) = 27°

8x = 8(9) = 72°

9x = 9(9) = 81°

.

Hence these are your values.

Answered by Anonymous
11

Given:

The ratio of the measures of the angles of a triangle is "3:8:9".

To Find:

The measure of each angle.

Solution:

\sf{\underline{★According \:to\:the\: question:}}

The ratio of measures of angle are 3:8:9

➺so now let the angles be 3x,8x,9x

 \sf {\underbrace{ \pink{sum \: of \: interior \: angles \: in \: a \: triangle \: is \: 180° }}}

 ⇒\tt {\: now \: the \: sum \:of \: angles = 180°} \\  \\  \\  \sf : ⟹ 3x + 8x + 9x = 180° \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \sf: ⟹ 20x = 180° \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \sf: ⟹ x = \cancel  \frac{180}{20}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \sf: ⟹ x = 9 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

so, now the angles are

 \sf3x = 3(9) = \pink{ 27°} \\  \sf \: 9x = 9(9) = \blue{ 81°} \:  \\  \sf \: 8x = 8(9) =  \orange{72°}

 \blue{ \underline{ \boxed{ \mathfrak{ \purple{ \therefore \: the \: angles \: are \: 27,81,72}}}}}

Verification:-

To check weather we are right let's add up the numbers and check weather they make 180°

\sf\pink{let's start:}

⟼27 + 81 + 72 = 180 \\  \\ ⟼108 + 72 = 180 \:  \:  \:  \:  \:  \:  \\  \\ ⟼180 = 180 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ \sf l.h.s = r.h.s \\  \\  \mathfrak { \huge{ \purple{ \dag{hence \: verified}}}}

hope this helps.!!

Attachments:
Similar questions