Math, asked by rukuratni, 3 months ago

The ratio of the radii of two circles is 8: 15. Find the ratio of their circumferences.​

Answers

Answered by Sen0rita
19

\bold {Given}\begin{cases} \sf \: The \: ratio \: of \: \: the \: radii \: of \:  two \: circles \: is \: \bold{8:15} \end{cases}

\sf\underline{We \: have \: to \: find \: the \: ratio \: of \: their \: circumferences}.

___________________________

\sf\underline{As \: we \: know \: that} :

\bigstar\boxed{\boxed{\bold\purple{circumference \: of \: a \: circle \:  =  \: 2\pi \: r}}}

☯︎ Let

  • \sf \: \bold{r1} \: be \: the \: radius \: of \: first \: circle \:

  • \bold{r2} \sf \: be \: the \: radius \: of \: second \: circle

  • \bold{c1} \sf \: be \: the \: circumference \: of \: first \: circle

  • \bold{c2} \sf \: be \: the \: circumference \: of \: second \: circle

Now,

\sf:\implies \:  \dfrac{c1}{c2}  =  \dfrac{2\pi \: r1}{2\pi \: r2}

\sf:\implies \:  \dfrac{c1}{c2}  =  \dfrac{2\pi8x}{2\pi15x}

\sf:\implies \:  \dfrac{c1}{c2}  =\cancel  \dfrac{2\pi8x}{2\pi15x}

\sf:\implies \:  \dfrac{c1}{c2}  = \boxed{\boxed{\bold\purple{ \frac{8}{15} }}}\bigstar

\sf\therefore{\underline{Hence, \: the \: ratio \: of \: their \: circumferences \: is \: \bold{ \dfrac{8}{15}} }}


Anonymous: Great!
Sen0rita: thenku :p ❤️
Clαrissα: Awesome di ! :D
Sen0rita: thankuh ❤️ :D
Answered by TheMathLoverGirl
3

Answer:

\mathfrak{ \large{\blue{ \underline{ \purple{ Given: }}}}}\mathfrak{ \large{\blue{ \underline{ \purple{ Given: }}}}}Given:</p><p></p><p>Radius of circle = 20 cm</p><p></p><p>Value of π = 3.14</p><p></p><p>\mathfrak{ \large{\blue{ \underline{ \purple{ To \: Find: }}}}}</p><p></p><p>Area and perimeter of circle</p><p></p><p>\mathfrak{ \large{\blue{ \underline{ \purple{ Solution:}}}}}</p><p>\:\:\:\:\:\:\:\:\:\:\:\:\: \mathfrak{ \underline{ \green{Formula \: to \: calculate \: the \: circumference \: of \: circle}}}Formulatocalculatethecircumferenceofcircle</p><p>\boxed{ \mathfrak{ \star \: \: \: { \red{ \large{circumference = 2 \times \pi \times radius}}}}}⋆circumference=2×π×radius</p><p></p><p>According to question,</p><p></p><p>\large{ \rm \longmapsto \: \: \: \: \: \: \: circumference = 2 \times 3.14 \times 20}⟼circumference=2×3.14×20</p><p>\large{ \rm \longmapsto \: \: \: \: \: \: \: circumference = \boxed{ \orange{ \mathfrak 125.6 \: cm}}}⟼circumference=125.6cm</p><p>\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \mathfrak{ \underline{ \green{Formula \: to \: calculate \: the \: circumference \: of \: circle}}}Formulatocalculatethecircumferenceofcircle</p><p>\boxed{ \mathfrak{ \star \: \: \: \: \: \: { \red{ \large{area = \pi \times {radius}^{2} }}}}}⋆area=π×radius2</p><p></p><p>According to question,</p><p></p><p>\large{ \rm \longmapsto \: \: \: \: \: \: \: area = 3.14 \times {20}^{2}}⟼area=3.14×202</p><p>\large{ \rm \longmapsto \: \: \: \: \: \: \: area = 3.14 \times 20 \times 20}⟼area=3.14×20×20</p><p>\large{ \rm \longmapsto \: \: \: \: \: \: \: area = \boxed{ \orange{ \mathfrak{1256 \: {cm}^{2} }}}}⟼area=1256cm2 \\  \\ \mathfrak{ \large{\blue{ \underline{ \purple{ Hence:}}}}}Hence:</p><p>The area and circumference of circle is 125.6 cm and 1256 cm²</p><p>

Similar questions