Math, asked by Anonymous, 2 months ago

The ratio of the radii of two right circular cones of the same height is 1:2. Find the ratio of their :
1. Volumes
2. Curved surface areas when the height of each cone is 3 times the smaller radius. ​

Answers

Answered by ItzAshi
214

Step-by-step explanation:

{\Large{\mathbf{\red{Question :-}}}} \\

The ratio of the radii of two right circular cones of the same height is 1:2. Find the ratio of their :

1. Volumes

2. Curved surface areas when the height of each cone is 3 times the smaller radius.

{\Large{\mathbf{\red{Solution :-}}}} \\

Let the radii be r and R respectively, and let h be the height of each cone

According to question,

{\large{\red{✠ \:  \:  \:  \:  \: }}}{\bold{\sf{\frac{r}{R}  \: =  \: \frac{1}{2}}}} \\  \\

{\bold{\sf{\orange{ \:  \:  \:  \:  \: R  \:  \: = \:  \:  2r}}}} \\  \\

1. Let the volumes be v and V respectively

Therefore,

{\bold{\sf{: \:  ⟹  \:  \:  \:  \:  \:  \: v  \:  \: =  \:  \: \frac{1}{3}πr²h}}} \\  \\

{\bold{\sf{:  \: ⟹  \:  \:  \:  \:  \:  \: V  \: =  \: \frac{1}{3}πR²h}}} \\  \\

We know that R = 2r,

{\bold{\sf{: \:  ⟹ \:  \:  \:  \:  \:  \:  V  \:  = \:   \frac{1}{3}π(2r)²h}}} \\  \\

{\bold{\sf{:  \: ⟹ \:  \:  \:  \:  \:  V \:  =  \: 4\Big(\frac{1}{3}πr²h\Big)  \: =  \: 4v}}} \\  \\

{\bold{\sf{: \:  ⟹  \:  \:  \:  \:  \:  \: \frac{v}{V}  \: = \:  \frac{v}{4v}  \: =  \: \frac{1}{4}}}} \\  \\

:  \: ⟹ \:  \:  \:  \:  \:  \: {\bold{\mathfrak{\fbox{\purple{v : V  \:  \: =  \:  \: 1 : 4}}}}} \\  \\

2. Let the curved surface areas be s and S respectively

Here,

h= 3r and R = 2r

Let's find the curved surface area

For s,

{\bold{\mathrm{:  \: ⟹   \:  \:  \:  \:  \: \: s  \: =  \: πrl }}} \\  \\

{\bold{\mathrm{:  \: ⟹  \:  \:  \:  \:  \:  \: s  \: = \:  πr\sqrt{h²  \: +  \: r²} }}} \\  \\

{\bold{\mathrm{:  \: ⟹  \:  \:  \:  \:  \:  \: s  \: =  \: πr\sqrt{(3r)²  \: + \:  r²} }}} \\  \\

:  \: ⟹ \:  \:  \:  \:  \:  \: {\bold{\mathrm{\orange{  \:  \:  \:  \:  \:  \: s  \: =  \: π  \: \times  \: \sqrt{10r²}}}}} \\  \\

For S,

{\bold{\mathrm{:  \: ⟹  \:  \:  \:  \:  \:  \: S  \: = \:  πRL }}} \\  \\

{\bold{\mathrm{:  \: ⟹  \:  \:  \:  \:  \:  \: S  \: = \:  π × 2r\sqrt{h² + R²}}}} \\  \\

{\bold{\mathrm{: \:  ⟹ \:  \:  \:  \:  \:  \:  S  \: =  \: π  \: ×  \: 2r\sqrt{(3r)²  \: + \:  (2r)²} }}} \\  \\

{\bold{\mathrm{: \:  ⟹  \:  \:  \:  \:  \:  \:  \:  \: S \:  =  \:  2πr\sqrt{13r} }}} \\  \\

:  \: ⟹ \:  \:  \:  \:  \:  \: {\bold{\mathrm{\orange{ \:  \:  S  \: =  \:  2π\sqrt{13r²} }}}}\\  \\

Now we have both the curved surface areas, so let's calculate their ratios

{\bold{\mathbf{:  \: ⟹  \:  \:  \:  \:  \:  \: \frac{s}{S}  \: = \:  \frac{π\sqrt{10r²}}{2π\sqrt{13r²}}}}} \\  \\

{\bold{\mathbf{: \:  ⟹ \:  \:  \:  \:  \:  \frac{s}{S} \:  = \:  \frac{\sqrt{10}}{2\sqrt{13}}}}} \\  \\

The ratio of their curved surface area is :

:  \: ⟹ \:  \:  \:  \:  \:  \: {\bold{\boxed{\mathfrak{\pink{ s : S \:  \:  = \:  \:  \sqrt{10}  \: : \:  2\sqrt{13}}}}}} \\ </p><p>

Similar questions