Math, asked by Anonymous, 1 month ago

The ratio of the radius to the height of a cylinder is 1:2. If the curved surface srea is 176 sq.cm, what is its volume​

Answers

Answered by Anonymous
82

Given :-

  • Curved Surface Area = 176 cm²
  • Ratios = 1:2

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

To Find :-

  • Volume = ?

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Solution :-

We know that :

{\large{\red{\bigstar \:  \:  \:  \:  \:  \: {\orange{\underbrace{\underline{\green{\bf{CSA = 2πrh}}}}}}}}}

First finding base and height :

Let :

Radius = 2x

Height = 1x

Finding :

{\large{:{\longmapsto{\bf{CSA =2πrh}}}}}

{\large{:{\longmapsto{\bf{176=2 \times  \frac{22}{7}  \times 2x  \times 1x}}}}}

{\large{:{\longmapsto{\bf{176 = \frac{44}{7} \times 2x }}}}}

{\large{:{\longmapsto{\bf{176 = \frac{88}{7}x}}}}}

{\large{:{\longmapsto{\bf{176 \times 7 = 88x}}}}}

{\large{:{\longmapsto{\bf{1232 = 88x}}}}}

{\large{:{\longmapsto{\bf{x =  {\cancel\frac{1232}{88} }}}}}}

{\blue{\dashrightarrow{\red{\underline{\bf{X = 14}}}}}}

So :

Radius = 2x = 2 × 14 = 28

Height = 1x = 1 × 14 =14

Now Volume :

We know that :

{\large{\red{\bigstar \:  \:  \:  \:  \:  \: {\orange{\underbrace{\underline{\green{\bf{Volume = πr²h}}}}}}}}}

Solving Starts :

{\large{:{\longmapsto{\bf{volume=πr²h}}}}}

{\large{:{\longmapsto{\bf{volume= \frac{22}{7}  \times  ({28})^{2} \times 14 }}}}}

{\large{:{\longmapsto{\bf{volume= \frac{22}{7}  \times  784\times 14 }}}}}

{\large{:{\longmapsto{\bf{volume={\cancel  \frac{241472}{7} }}}}}}

{\large{\red{:{\twoheadrightarrow{\purple{\underline{\boxed{\bf{Volume =34496 {cm}^{3}  }}}}}}}}}

Hence :

{\large{\purple{\underline{\red{\underline{\pink{\pmb{\mathfrak{Volume = 34496cm³}}}}}}}}}</p><p>

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Answered by SparklingBoy
131

 \large \dag Question :-

The ratio of the radius to the height of a cylinder is 1 : 2. If the curved surface area is 176 cm², what is its volume ?

 \large \dag Answer :-

\red\dashrightarrow\underline{\underline{\sf  \green{Volume  \: of \:  Cylinder  \: is \: 88\sqrt{14} \:  cm^3}} }\\

 \large \dag Step by step Explanation :-

We Know that volume of Cylinder is :

\large \bf \red\bigstar \: \: \orange{ \underbrace{ \underline{ V =  \pmb\pi {r}^{2} h }}} \\

And CSA of cylinder is :

\large \bf \red\bigstar \: \: \orange{ \underbrace{ \underline{  CSA = 2 \pmb\pi rh}}}

Where,

  • r = Radius of base of Cylinder

  • h = Height of Cylinder

  •  \sf \large\pi =  \dfrac{22}{7}

Finding Radius and Height :-

Here in the Question we are given that :

The ratio of the radius to the height of a cylinder is 1 : 2

Therefore Let us Assume that,

  •  \small \text{Radius of Cylinder =  \large r = x }

  •   \small\text{Height of Cylinder =  \large h = 2x}

✧ As the curved surface area is 176 cm²

Using Formula of CSA of Cylinder :

:\longmapsto \rm 2 \times  \frac{22}{7}  \times x \times 2x = 176 \\

:\longmapsto \rm  \frac{88}{7}  {x}^{2}  = 176 \\

:\longmapsto \rm  {x}^{2}  = 176 \div  \frac{88}{7}  \\

:\longmapsto \rm  {x}^{2}  = 176 \times  \frac{7}{88}  \\

:\longmapsto \rm  {x}^{2}  =  \frac{1232}{22}  \\

:\longmapsto \rm  {x}^{2}  = 14 \\

\purple{ \large :\longmapsto  \underline {\boxed{{\bf x =  \sqrt{14} } }}}

Therefore,

\blue\dashrightarrow\underline{\underline{\sf  \pink{Radius  \: of \:  Cylinder  =\sqrt{14}\: cm}} }\\

\blue\dashrightarrow\underline{\underline{\sf  \pink{Height  \: of \:  Cylinder  =2\sqrt{14}\: cm}} }\\

Finding Volume of Cylinder :-

Using Formula for Volume :

:\longmapsto \rm Volume =  \frac{22}{7}  \times  {( \sqrt{14} \:  )}^{2}  \times 2 \sqrt{14}  \\

:\longmapsto \rm Volume   =  \frac{22}{7}  \times 14 \times 2 \sqrt{14}  \\

\purple{  :\longmapsto  \underline {\boxed{{\bf Volume = 88  \sqrt{14} \: cm {}^{3}   } }}} \\

Therefore,

\underline{\pink{\underline{\frak{\pmb{\text Volume  \: of \:  C \text ylinder  \: is \: 88\sqrt{14} \:  cm^3 }}}}}

Similar questions