Math, asked by Ligature, 23 days ago

The ratio of the radius to the height of a cylinder is 1:2. If the curved surface srea is 176 sq.cm, what is its volume​

Answers

Answered by Okhey
17

_______________________________

 \frak{Let \:  us  \: assume} \rightarrow    \begin{cases}  \frak{The  \: units  \: digits  \: be  \: \green{a}}   \\  \\ \frak{The  \: tens \:  digit  \: be  \:  \green{b}}\end{cases}

Hence, we get

 \implies \frak{ a + b = 5 + b} \\  \\  \implies \frak{  \pink{a = 5}}

After which the original number is

 \dashrightarrow \frak{ \frak{Original \:  Number   :  \underline{10a + b}}}

Reversing the digit we will get the new number

 \dashrightarrow \frak{New \:  Number =  \underline{10b + a}}

Now, according to the question putting all the required values to get the equation

 \rightharpoondown \frak{10a + b - (a + b) = 10 + 10b + a} \\  \\ \rightharpoonup \frak{10a + b - a  -  b = 10 + 10b + a} \\  \\ \rightharpoondown \frak{9a + \cancel b  -   \cancel b = 10 + 10b + a} \\  \\ \rightharpoonup \frak{9a - a = 10 + 10b} \\  \\ \rightharpoondown \frak{8(5) - 10 =  10b} \\  \\ \rightharpoonup  \frak{40 - 10 = 10b} \\  \\ \rightharpoondown \frak{10b = 30} \\  \\ \star \quad \underline{ \boxed{ \frak{ \purple{b = 3}}}}

 \dag  \:  \: \underline{ \frak{As \:  we  \: know \:  that} }:

 \frak{ \blue{a = 5 }  \: and\:  \pink{b = 3}} \\  \\  \therefore \sf Difference \:  between  \: the \:  numbers =  \frak{5 - 3 =\red{2}}

Similar questions