Math, asked by lovelyahmed2503, 2 months ago

The ratio of the sides of a triangular land is 5:12:13. If the area of the land be 900 sqm, find its perimeter [hint: use area = root over s×(s-a)×(s-b)×(s-c)]​

Answers

Answered by 12thpáìn
18

Given

  • Ratio of Side's of triangle = 5:12:13
  • Area of triangle = 900m²

To Find

  • Perimeter of Triangle

Solutions

_____________________

 \bf \mathcal {Let  \: the \:  ratio \:  of \:  Side's \:  of \:  triangle  \: be   \:  \bf\: 5x,  \: 12x  \: and \:  13x.}

We have,

  • a= 5x
  • b=12x
  • c= 13x

We know that,

 \boxed{Semi-Perimeter  = \dfrac{a+b+c}{2} }

{S  = \dfrac{5x  +  12x + 13x}{2}}

{S  = \dfrac{30x}{2}}

{S  = 15 x}

Now,

  • Let a, b and c be the sides of a triangle.
  • Apply Heron's Formula of find the area of triangle.

{ \:  \:  \:  \:  \:  \implies \bf Area  \: of  \: ∆ = \sqrt{S(S-a)(S-b)(S-c)}}

{ ~~~~~\implies     \sf900 = \sqrt{15x(15x -5 x)(15 - 12x)(15x - 13x)}}

{ ~~~~~\implies     \sf900 = \sqrt{15x \times 10x \times 3x \times 2x}}

{ ~~~~~\implies     \sf900 = \sqrt{ 900{x}^{4} }}

{~~~~~\implies      \sf {900}^{2}  =({ \sqrt{  {30}^{2}  \times( {x}^{2})^{2} }} )^{2} }

{~~~~~\implies      \sf  \sqrt{810000}   =30   {x}^{2}  }

{~~~~~\implies      \sf  900   =30   {x}^{2}  }

{~~~~~\implies      \sf     {x}^{2}  = 30 }

{~~~~~\implies      \sf    x  ≈5.477 }

Now

  • a=5.47722...×5=27.386127875258m
  • b=5.47722...×12=65.726706900619m
  • c=5.47722...×13=71.203932475671m

 \sf{Perimeter  \: of  \: ∆ = sum  \: of  \: all  \: side's}

\sf{Perimeter  \: of  \: ∆ = 27.38m + 65.72m +71.20m}

\bf{Perimeter  \: of  \: ∆ = 164.3 meters}\\\\\\

Figure

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(1, 0)(1,0)(3,3)\qbezier(5,0)(5,0)(3,3)\qbezier(5,0)(1,0)(1,0)\put(2.85,3.2){$\bf A$}\put(0.5,-0.3){$\bf C$}\put(5.2,-0.3){$\bf B$}\end{picture}

\begin{gathered}\\\\\\\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \bigstar \: \underline{\bf{More \: Useful \: Formula}}\\ {\boxed{\begin{array}{cc}\dashrightarrow {\sf{Perimeter \: of \: rectangle = 2(l + b)}} \\ \\ \dashrightarrow \sf{Area \: of \: rectangle = length \: \times breadth }\\ \\ \dashrightarrow \sf{Perimeter \: of \: square = 4 \times side } \\ \\ \dashrightarrow \sf{Area \: of \: square =(side) ^{2} } \\ \\ \dashrightarrow \sf{Area \: of \: parallelogram = base \times height} \\ \\ \dashrightarrow \sf{Area \: of \: trapezium = \frac{1}{2}×sum \: of \: parallel \: side \: \times \: height }\\ \end{array}}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions