Physics, asked by shahensyed18, 1 year ago

the ratio of the speed of sound in nitrogen gas to that in the helium gas at 300 k is?

Answers

Answered by TPS
167
speed of sound in air is given by

v= \sqrt{ \frac{\gamma RT}{M} } \\ \\ \gamma_H_e= \frac{5}{3};\ \gamma_N_2= \frac{7}{5} \\ M_{He} =4;\ M_{N2}=28\\ \\ \frac{v_{N2}}{v_{He}} = \sqrt{ \frac{\frac{\gamma_N_2 RT}{M_N_2} }{ \frac{\gamma_{He} RT}{M_{He}}}} = \sqrt{ \frac{\gamma_N_2}{\gamma_H_e} \times  \frac{M_{He}}{M_{N2}} } = \sqrt{ \frac{7 \times 3}{5 \times 5} \times  \frac{4}{28}  } = \frac{ \sqrt{3} }{5}
Answered by mindfulmaisel
25

The ratio of the speed of sound in nitrogen gas to that in the helium gas at 300 K is \frac { \sqrt { 3 } }{ 5 }

Solution:

Speed of the sound in air is given by the equation,

v\quad =\quad \sqrt { \frac { \gamma RT }{ M } }

Where,

\gamma - Adiabatic constant

R - Ideal gas constant

T - Absolute Temperature

M - Molecular mass of gas

Since, Nitrogen gas molecules are diatomic and that of Helium are monoatomic.

So,

\gamma _{ H_{ e } }\quad =\quad \frac { 5 }{ 3 }

\gamma _{ N_{ 2 } }\quad =\quad \frac { 7 }{ 5 }

M_{ He }\quad =\quad 4

M_{ { N }_{ 2 } }\quad =\quad 28

\frac { v_{ { N }_{ 2 } } }{ v_{ He } } \quad =\quad \sqrt { \frac { \frac { \gamma _{ N_{ 2 } }RT }{ M_{ { N }_{ 2 } } }  }{ \frac { \gamma _{ He }RT }{ M_{ He } } } }

=\quad \sqrt { \frac { \gamma _{ N_{ 2 } } }{ \gamma _{ He } } \quad \times \quad \frac { M_{ He } }{ M_{ N_{ 2 } } } }

=\quad \sqrt { \frac { 7\quad \times \quad 3 }{ 5\quad \times \quad 5 } \quad \times \quad \frac { 4 }{ 28 } }

\frac { v_{ { N }_{ 2 } } }{ v_{ He } } \quad =\quad \frac { \sqrt { 3 } }{ 5 }

Similar questions