Math, asked by jivika0811, 9 months ago

The ratio of the sum of n terms of 2 A.P.’s is (7n+1):(4n+27). Find the ratio of their 5 terms

Answers

Answered by amansharma264
6

 \bf \implies \green{{ \underline{given \div }}}

 \rm \to \: ratio \: of \: sum \: of \: n \: terms  \: of \: 2 \: a.p\\  \\  \rm \to \: (7n \:  +  \: 1) \ratio \: (4n \:  +  \: 27)

 \bf \to \:   \orange{\underline{to \: find \: the \: ratio \: of \: their \: 5th \: terms}}

 \rm \to \: sum \: of \: n \: terms \: of \: an \: ap \\  \\  \rm \to \:  s_{n} \:  =  \frac{n}{2} (2a \:  +  \: ( \: n \:  -  \: 1)d) \\  \\  \rm \to \: the \: ratio \: of \: sum \: of \:  s_{n} \: and \:  s_{n} {}^{1} \\  \\  \rm \to \:  \frac{ s_{n}}{ s_{n} {}^{1}  }    =  \frac{ \frac{n}{2}(2a \:  +  \: (n \:  -  \: 1)d) }{ \frac{n}{2}(2a {}^{1}  + (n \:  -  \: 1)d {}^{1} ) }  =  \frac{7n \:   +  \: 1}{4n \:  +  \: 27}  \\  \\  \rm \to \:  \frac{ s_{n} }{ s_{n} {}^{1} }  =  \frac{2a \:  +  \: ( \: n - 1)d}{2a {}^{1}  + (n - 1)d {}^{1} }  =  \frac{7n \:  +  \: 1}{4n \:  +  \: 27}  \\  \\  \rm \to \:  \frac{ s_{n} }{ s_{n} {}^{1}  } =  \frac{a \:  +  (\frac{n \:  -  \: 1}{2})d }{a {}^{1} +  \frac{(n \:  -  \: 1)}{2} d {}^{1}  }   =  \frac{7n \:  +  \: 1}{4n \:  +  \: 27}  \\  \\  \rm \to \: we \: have \: to \: find \: 5th \: term \\  \\  \rm \to \frac{ t_{5} }{ t_{5} {}^{1}  } =  \frac{a \:  +  \: 4d}{a {}^{1}  + 4d {}^{1} }   \\  \\  \rm \to \:  \frac{n \:  -  \: 1}{2}  = 5 \\  \\ \rm \to \: n \:  - 1 \:  = 10 \\  \\  \rm \to \: n \:  =  \: 11 \\  \\  \rm \to \:  \frac{ t_{5}}{ t_{5} {}^{1}  }  =  \frac{7n \:  +  \: 1}{4n \:  +  \: 27}  \\  \\  \rm \to \:  \frac{ t_{5} }{ t_{5} {}^{1} }  =  \frac{7(11) + 1}{4(11) + 27}  \\  \\  \rm \to \:  \frac{ t_{5} }{ t_{5} {}^{1} }  =  \frac{78}{71}

Similar questions