Math, asked by surendrasingh75400, 9 months ago

The ratio of the sum of n terms of an AP is 2n-5 : n+7. Find the ratio of their 15 terms. ​

Answers

Answered by BrainlyIAS
15

The ratio of their 15 terms 53 : 36

__________________________

\orange{\bigstar}  Given  \green{\bigstar}

The ratio of the sum of n terms of an AP is 2n-5 : n+7

\orange{\bigstar}  To Find  \green{\bigstar}

The ratio of their 15 terms

\orange{\bigstar}  Key Points  \green{\bigstar}

\rm nth\ term\ of\ an\ AP,\\\\ \pink{\bigstar}\ \; \bf a_n=a+(n-1)d\\\\\rm Sum\ of\ n\ terms\ in\ an\ AP,\\\\\pink{\bigstar}\ \; \bf S_n=\dfrac{n}{2}(2a+(n-1)d)

\orange{\bigstar}  Solution  \green{\bigstar}

Let ,

For 1st AP :

nth term = aₙ

First term = a

Common difference = d

For 2nd AP :

nth term = Aₙ

First term = A

Common difference = D

So , A/c , " The ratio of the sum of n terms of an AP is 2n-5 : n+7 "

\to \rm \dfrac{\frac{n}{2}(2a+(n-1)d)}{\frac{n}{2}(2A+(n-1)D) }=\dfrac{2n-5}{n+7}\\\\\to \rm \dfrac{2(a+(\frac{n-1}{2})d)}{2(A+(\frac{n-1}{2})D)}=\dfrac{2n-5}{n+7}\\\\\to \bf \dfrac{a+(\frac{n-1}{2})d}{A+(\frac{n-1}{2})D}=\dfrac{2n-5}{n+7}...(1)

Here , we need to find the ratio of  \bf \dfrac{a_{15}}{A_{15}}= \dfrac{a+14d}{A+14D}\ \; \red{\bigstar} ,

So ,

\to \rm \dfrac{n-1}{2}=14\\\\\to \rm n-1=28\\\\\to \bf n=29\ \; \pink{\bigstar}

So , sub. n value in (1) ,

\to \rm \dfrac{a+(\frac{29-1}{2})d}{A+(\frac{29-1}{2})D}=\dfrac{2(29)-5}{(29)+7}\\\\\to \bf \dfrac{a+14d}{A+14D}=\dfrac{53}{36}\\\\\to \bf \dfrac{a_{15}}{A_{15}}=\dfrac{53}{36}\ \; \pink{\bigstar}

_________________________

Similar questions
English, 9 months ago