Math, asked by rithikm0706, 1 month ago

the ratio of the sum of the cubes of an infinitely decreasing gp to the sum of its squares is 12:13. the sum of the first and second term is equal to 4/3. find the sum, first term and common ratio.

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Let assume an infinite GP series with

  • First term be a

  • Common ratio be r.

As its an decreasing GP, so r < 1.

And moreover its an Infinite GP series, so - 1 < r < 1.

Now,

Let suppose infinite GP series as

\rm :\longmapsto\:a + ar +  {ar}^{2} +  -  -  -  -  -

We know,

Sum of infinite GP series is given by

\green{ \boxed{ \bf \: S_ \infty  = \dfrac{a}{1 - r} \: where \:  |r| &lt; 1}}

Now, According to statement,

Sum of first and second term is 4/3.

\rm :\longmapsto\:a + ar = \dfrac{4}{3}  -  -  -  - (1)

Consider,

Sum of the cube of infinite GP series,

\rm :\longmapsto\: {a}^{3} +  {a}^{3} {r}^{3} +  {a}^{3} {r}^{6} +  -  -  -  -

So, sum of this series is

\rm :\longmapsto\:S_1 = \dfrac{ {a}^{3} }{1 -  {r}^{3} } -  -  - (2)

Consider,

Sum of the squares of infinite GP series,

\rm :\longmapsto\: {a}^{2} +  {a}^{2} {r}^{2} +  {a}^{2} {r}^{4} +  -  -  -  -

So, sum of this series is

\rm :\longmapsto\:S_2 = \dfrac{ {a}^{2} }{1 -  {r}^{2} } -  -  - (3)

Now,

According to statement,

\rm :\longmapsto\:\dfrac{S_1}{S_2}  = \dfrac{12}{13}

\rm :\longmapsto\:\dfrac{ {a}^{3} }{1 -  {r}^{3} }  \div \dfrac{ {a}^{2} }{1 -  {r}^{2} }  = \dfrac{12}{13}

\rm :\longmapsto\:\dfrac{ {a}^{3} }{(1 -  r)(1 + r +  {r}^{2} )}   \times  \dfrac{(1 - r)(1 + r)}{{a}^{2} }  = \dfrac{12}{13}

\green{\boxed{ \because \sf \:  {x}^{3} -  {y}^{3} = (x - y)( {x}^{2} + xy +  {y}^{2})}}

\green{\boxed{ \because \sf \:  {x}^{2} -  {y}^{2} = (x - y)(x + y)}}

\rm :\longmapsto\:\dfrac{a(1 + r)}{1 + r +  {r}^{2} }  = \dfrac{12}{13}

\rm :\longmapsto\:\dfrac{a+ ar}{1 + r +  {r}^{2} }  = \dfrac{12}{13}

\rm :\longmapsto\:\dfrac{4}{3(1 + r +  {r}^{2}) }  = \dfrac{12}{13}  \:  \:  \:  \{ \: using \: (1) \}

\rm :\longmapsto\:\dfrac{1}{3(1 + r +  {r}^{2}) }  = \dfrac{3}{13}  \:  \:  \:

\rm :\longmapsto\:9 + 9r +  {9r}^{2}  = 13

\rm :\longmapsto\: {9r}^{2}  + 9r - 4 = 0

\rm :\longmapsto\: {9r}^{2}  + 12r - 3r - 4 = 0

\rm :\longmapsto\:3r(3r + 4) - 1(3r + 4) = 0

\rm :\longmapsto\:(3r - 1)(3r + 4) = 0

\rm :\implies\:r = \dfrac{1}{3}  \:  \:  \: or \:  \:  \:  -  \: \dfrac{4}{3}  \:  \:  \:  \{rejected \: as \:  |r| &lt; 1 \}

\bf\implies \:r = \dfrac{1}{3}

Now, Substitute value of r in equation (1), we get

\rm :\longmapsto\:a(1 + r)= \dfrac{4}{3}

\rm :\longmapsto\:a(1 + \dfrac{1}{3} )= \dfrac{4}{3}

\rm :\longmapsto\:a(\dfrac{3 + 1}{3} )= \dfrac{4}{3}

\rm :\longmapsto\:a(\dfrac{4}{3} )= \dfrac{4}{3}

\bf\implies \:a = 1

Now, we have ,

\rm :\longmapsto\:a = 1

\rm :\longmapsto\:r = \dfrac{1}{3}

We know,

Sum of infinite GP series is

\rm :\longmapsto\:{{ \bf \: S_ \infty  = \dfrac{a}{1 - r} \: where \:  |r| &lt; 1}}

\rm  \:  =  \: \:\dfrac{1}{ \:  \:  \: 1 - \dfrac{1}{3}  \:  \:  \:  \:  \:  \: }

\rm  \:  =  \: \:\dfrac{1}{ \:  \:  \:  \dfrac{3 - 1}{3}  \:  \:  \:  \:  \:  \: }

\rm  \:  =  \: \:\dfrac{1}{ \:  \:  \:  \dfrac{2}{3}  \:  \:  \:  \:  \:  \: }

\rm  \:  =  \: \:\dfrac{3}{2}

Hence,

 \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \underbrace \green{ \boxed{ \bf \: S_ \infty  \:  =  \: \dfrac{3}{2}}}

Answered by yograj3411
0

Answer:

Step-by-step explanation:

Similar questions