Math, asked by junaid667, 10 months ago

The ratio of the sums of m and n terms of an A.P. is m:n?. Show that the value
of the m and n'th terms is (2m - 1): (2n-1).

Answers

Answered by amitnrw
4

Given : The ratio of the sums of m and n terms of an A.P. is m²:n² ( correction)

To find :  Ration of value of the m and nth terms is (2m - 1): (2n-1)

Solution:

Sum of m terms  = (m/2 )(2a + (m - 1)d)

Sum of m terms = (n/2 )(2a + (n - 1)d)

(m/2 )(2a + (m - 1)d )/  (n/2 )(2a + (n - 1)d)  = m²/n²

=> (2a + (m - 1)d )/ (2a + (n - 1)d)  = m/n

=> n (2a + (m - 1)d ) = m (2a + (n - 1)d)  

=> 2an + nmd - nd  = 2am + mnd - md

=> 2an   - nd  = 2am  - md

=> d(m - n) =  2a(m - n)

=> 2a = d  

mth term  = a + (m - 1)d  = a + (m - 1)2a  =a(1 + 2m - 2) = a(2m - 1)

nth term  = a + (n - 1)d  = a + (n - 1)2a  =a(1 + 2n - 2) = a(2n - 1)

mth term  : nth term  = a(2m - 1) :  a(2n - 1)

=> mth term  : nth term   = (2m - 1) :  (2n - 1)

QED

Learn more:

किसी समांतर श्रेणी के m तथा n पदों के योगफलों का ...

https://brainly.in/question/9240400

The Ratio of Sumof n terms of the twoAP's is (n+1) :(n-1)then the ...

https://brainly.in/question/12937646

Similar questions