Math, asked by keertana2004, 1 year ago

the ratio of the volume of 2 spheres is 27:8.find the ratio of their surface areas.....

Answers

Answered by neerajmodgil85pc43rj
2
Let r1 and r2 be the radius of the two spheres.
4/3 π r1³ : 4/3 π r2³ = 27 : 8
r1³ : r2³ = 27 : 8
r1 : r2 = ∛ 27 : 8
r1 : r2 = 3 : 2

Ratio of surface area = 4πr1² : 4πr2² 
= r1² : r2²
= 3² : 2²
= 9 : 4

Hope it helps:)
Brainliest please:))

keertana2004: thank you!
keertana2004: i cannot understand how 3√27:8==3:2
keertana2004: please answer me....
Answered by rizwan35
5
let \: redius \: of \: a \: sphere \: = x \\ \\ and \: radius \: of \: other \: sphere = y \\ \\ therefore \: volume \: of \: spheres \: are \\ \\ \frac{4}{3} \pi \times x {}^{3} \: and  \:\frac{4}{3} \pi \times y {}^{3} \\ \\ according \: to \: question \\ \\ \frac{ \frac{4}{3}\pi \times x {}^{3} }{ \frac{4}{3}\pi \times y {}^{3} } = \frac{27}{8} \\ \\ \frac{x {}^{3} }{y {}^{3} } = \frac{27}{8} \\ \\ \frac{x}{y} = \sqrt[3]{ \frac{27}{8} } \\ \\ \frac{x}{y} = \frac{3}{2} \\ \\ therefore \\ \\ x = 3 \\ \\ y = 2 \\ \\ surface \: areas \: are \\ \\ 4\pi \times x {}^{2} \: and \: 4\pi \times {y}^{2} \\ \\ therefore \: ratios \: of \: their \: surface \: areas \\ \\ = \frac{4\pi \times {x}^{2} }{4\pi \times {y}^{2} } \\ \\ = \frac{ {x}^{2} }{ {y}^{2} } = \frac{ {3}^{2} }{ {2}^{2} } \\ \\ = \frac{9}{4}

=9:4

hope it helps....

keertana2004: thanks!
keertana2004: how 3√27÷8 =3÷2??..
rizwan35: because 3×3×3=27 and 2×2×2=8
Similar questions