Math, asked by alsaffa, 11 months ago

the ratio of two sides of parallelogram are in ratio 3 is to 4 and the perimeter is 42 cm find all the sides of the parallelogram​

Answers

Answered by Anonymous
18

AnswEr :

\normalsize\bullet\sf\ let \: the \: first \: side(S_1) \: be \: 3x \: cm

\normalsize\bullet\sf\ let \: the \: second \: side(S_2) \: be \: 4x \: cm

\underline{\dag\:\textsf{According \: to \: given \: in \: question:}}

\normalsize\ : \implies{\boxed{\sf{Perimeter_{\parallel gm} = 2(S_1 \: + \: S_2) }}} \\ \\ \normalsize\ : \implies\sf\ 42 = 2(3x + 4x) \\ \\ \normalsize\ : \implies\sf\ 42  = 2(7x)

\normalsize\ : \implies\sf\ 42 = 14 x \\ \\ \normalsize\ : \implies\sf\ x = \frac{42}{14} = 3

\normalsize\ : \implies{\boxed{\sf \red{Value \: of \: x = 3}}}

\underline{\dag\:\textsf{Block \: the \: values \: in \: available \: data:}}

\:\:\normalsize\bullet\:\sf\ Side \: 1 \: = 3x \: cm

\normalsize\ : \implies\sf\ 3x = 3 \times\ 3

\normalsize\ : \implies\sf\color{darkblue}\ Side \: 1 = 9cm

\:\:\normalsize\bullet\:\sf\ Side \: 2 \: = 4x \: cm

\normalsize\ : \implies\sf\ 4x = 4 \times\ 3

\normalsize\ : \implies\sf\color{darkblue}\ Side \: 2 = 12cm

Some Important related to it :

\setlength{\unitlength}{0.83cm}\begin{picture}(12,4)\thicklines\put(7,8.9){$A$}\put(12.6,8.9){$D$}\put(5.6,5.9){$B$}\put(11.2,5.9){$C$}\put(5.4,7.5){$side\:1$}\put(8,5.6){$side\:2$}\put(6,6){\line(1,0){5}}\put(7.5,9){\line(1,0){5}}\put(12.5,9){\line(-1,-2){1.5}}\put(6,6){\line(1,2){1.5}}\end{picture}

Properties of Parallelogram :

• Opposite sides are equal.

• Opposite angles are equal.

• Diagnols bisect one another.

Answered by Anonymous
47

\bold{\huge{\underline{\underline{\rm{Answer:}}}}}

Four sides are of parallelogram are :

  1. 9 cm
  2. 12 cm
  3. 9 cm
  4. 12 cm

Given :

  • The ratio of two sides of a parallelogram are 3:4
  • Perimeter of the parallelogram = 42 cm

To Find :

  • Sides of the parallelogram.

Solution :

Let x be the common multiple of the ratio 3:4.

° \sf{Side_1} = 3x

\sf{Side_2} = 4x

Perimeter of the sides = 42 cm

Formula :

\bold{\large{\boxed{\red{\boxed{\mathtt{Perimeter\:=\:2\:(length\:+\:breadth)}}}}}}

Block in the available data,

\mathtt{42\:=\:2(3x+4x)}

\mathtt{42\:=\:6x\:+\:8x}

\mathtt{42\:=\:14x}

\mathtt{\dfrac{42}{14}\:=\:x}

\mathtt{3\:=\:x}

Substitute x = 3 in the ratio of sides.

\bold{\large{\boxed{\blue{\mathtt{Side_1= 3x = 3 \times 3 = 9 cm. </p><p>}}}}}

\bold{\large{\boxed{\blue{\mathtt{Side_2= 4x = 4 \times 3 = 12 cm. </p><p>}}}}}

Property of parallelogram :

  • Opposite sides are parallel and congruent.

\bold{\large{\boxed{\green{\mathtt{Side_3= 3x = 3 \times 3 = 9 cm}}}}}

\bold{\large{\boxed{\green{\mathtt{Side_4= 4x = 4 \times 3 = 12 cm}}}}}

Similar questions