Math, asked by mani7789, 5 months ago

the ratio of two sides of parallgrom is 3:5and perimeter is 48 m then the sides of the parallgrom are​

Answers

Answered by Champion55
5

Given :

⬤ Sides of Parallelogram are in the Ratio 3:5.

⬤ Perimeter of Parallelogram is 48 m.

To Find :

⬤ Side of Parallelogram .

Solution :

Let :

  • Length of One Side of Parallelogram be 3x.
  • Length of Other Side of Parallelogram be 5x.

According to the Question :-

48 = 2(Side¹ + Side²)

{48 = 2(3x + 5x)}

48/2 = (3x + 5x)

24 = 8x

24/8 = x

\bf{3 = x}

Therefore , The Value of x is 3 .

Hence ,

Length of One Side of Parallelogram = 3x

= 3(3)

= 9

Length of Other Side of Parallelogram = 5x

= 5(3)

= 15

Therefore , The Sides of Parallelogram are 9 m and 15 m.


chandresh126: Well Explained ✌
Answered by Anonymous
7

Correct Question-:

  • The ratio of two sides of parallgrom is 3:5 and perimeter is 48 m .Find the sides of the parallgrom .

AnswEr -:

  • \boxed{\purple{\sf{\star{\:The\: Length\:of\:two\:sides\:of\:parallelogram\:are \:9m \:and\:15m\:.}}}}

Explanation-:

Given ,

  • The ratio of two sides of parallgrom is 3:5 .
  • The perimeter of 48 m .

To Find ,

  • The sides of parallelogram.

Solution-:

  • ☆ Let the length of two sides be -:
  • (Side)¹ -: 3x m .
  • (Side)² -: 5x m ..................... [1]

  • \boxed{\blue{\sf{\star{\:The\:Perimeter \:\:of\:parallelogram \:is= 2(Side_{1} + Side_{2})}}}}

Here,

  • (Side)¹ -: 3x m .
  • (Side)² -: 5x m ......... [From 1]

Now ,

  • \pink{\sf{\rightarrow {48 m \:-: 2 (3x + 5x ) }}}
  • \pink{\sf{\rightarrow {48 m \:-: 2 (8x ) }}}
  • \pink{\sf{\rightarrow {\frac{48}{2} \:-: 8x }}}
  • \pink{\sf{\rightarrow {24 \:-: 8x }}}
  • \pink{\sf{\rightarrow {\frac{24}{8} \:-: x }}}
  • \pink{\sf{\rightarrow {3 \:-: x }}}

Therefore,

  • \boxed{\purple{\sf{\star{\:x=3\:}}}}

Now ,

  • The length of first side or (side)¹ = 3x = 3 × 3 = 9 m
  • The length of first side or (side)² = 5x = 5 × 3 = 15 m

Hence,

  • \boxed{\purple{\sf{\star{\:The\: Length\:of\:two\:sides\:of\:parallelogram\:are \:9m \:and\:15m\:.}}}}

______________________♡____________________

Similar questions