Math, asked by ehggames, 1 year ago

The ratio of volumes of two spheres is 512:729. find the ratio of their surface areas.

Answers

Answered by MaheswariS
6

Answer:

{A_1}:{A_2}=64:81

Step-by-step explanation:

Formula used:

Volume of a sphere of radius r

=\frac{4}{3}\pi\:r^3 cubic units

Surface area of a sphere of radius r

=4\pi\:r^2 square units

Let r_1\:and\:r_2 be radii of the given two spheres.

Given:

V_1:V_2=512:729

\frac{4}{3}\pi\:{r_1}^3:\frac{4}{3}\pi\:{r_2}^3=512:729

\frac{\frac{4}{3}\pi\:{r_1}^3}{\frac{4}{3}\pi\:{r_2}^3}=\frac{512}{729}

\frac{{r_1}^3}{{r_2}^3}=\frac{8^3}{9^3}

(\frac{r_1}{r_2})^3=(\frac{8}{9})^3

this implies

\frac{r_1}{r_2}=\frac{8}{9}

r_1=8k\:and\:r_2=9k

Now,

\frac{A_1}{A_2}

=\frac{4\pi\:{r_1}^2}{4\pi\:{r_2}^2}

=\frac{{r_1}^2}{{r_2}^2}

=\frac{(8k)^2}{(9k)^2}

=\frac{64k^2}{81k^2}

=\frac{64}{81}

{A_1}:{A_2}=64:81

Similar questions