Math, asked by hammakaur, 7 months ago

the rational numbers find the value of P and Q and the numbers when they are Express P by q and tell whether they are addition find the value of3/8+(-5/1)​

Answers

Answered by vk8091624
0

EXERCISE 1.1 PAGE NO: 1.5

1. Add the following rational numbers:

(i) -5/7 and 3/7

(ii) -15/4 and 7/4

(iii) -8/11 and -4/11

(iv) 6/13 and -9/13

Solution:

Since the denominators are of same positive numbers we can add them directly

(i) -5/7 + 3/7 = (-5+3)/7 = -2/7

(ii) -15/4 + 7/4 = (-15+7)/4 = -8/4

Further dividing by 4 we get,

-8/4 = -2

(iii) -8/11 + -4/11 = (-8 + (-4))/11 = (-8-4)/11 = -12/11

(iv) 6/13 + -9/13 = (6 + (-9))/13 = (6-9)/13 = -3/13

2. Add the following rational numbers:

(i) 3/4 and -5/8

Solution: The denominators are 4 and 8

By taking LCM for 4 and 8 is 8

We rewrite the given fraction in order to get the same denominator

3/4 = (3×2) / (4×2) = 6/8 and

-5/8 = (-5×1) / (8×1) = -5/8

Since the denominators are same we can add them directly

6/8 + -5/8 = (6 + (-5))/8 = (6-5)/8 = 1/8

(ii) 5/-9 and 7/3

Solution: Firstly we need to convert the denominators to positive numbers.

5/-9 = (5 × -1)/ (-9 × -1) = -5/9

The denominators are 9 and 3

By taking LCM for 9 and 3 is 9

We rewrite the given fraction in order to get the same denominator

-5/9 = (-5×1) / (9×1) = -5/9 and

7/3 = (7×3) / (3×3) = 21/9

Since the denominators are same we can add them directly

-5/9 + 21/9 = (-5+21)/9 = 16/9

(iii) -3 and 3/5

Solution: The denominators are 1 and 5

By taking LCM for 1 and 5 is 5

We rewrite the given fraction in order to get the same denominator

-3/1 = (-3×5) / (1×5) = -15/5 and

3/5 = (3×1) / (5×1) = 3/5

Now, the denominators are same we can add them directly

-15/5 + 3/5 = (-15+3)/5 = -12/5

(iv) -7/27 and 11/18

Solution: The denominators are 27 and 18

By taking LCM for 27 and 18 is 54

We rewrite the given fraction in order to get the same denominator

-7/27 = (-7×2) / (27×2) = -14/54 and

11/18 = (11×3) / (18×3) = 33/54

Now, the denominators are same we can add them directly

-14/54 + 33/54 = (-14+33)/54 = 19/54

(v) 31/-4 and -5/8

Solution: Firstly we need to convert the denominators to positive numbers.

31/-4 = (31 × -1)/ (-4 × -1) = -31/4

The denominators are 4 and 8

By taking LCM for 4 and 8 is 8

We rewrite the given fraction in order to get the same denominator

-31/4 = (-31×2) / (4×2) = -62/8 and

-5/8 = (-5×1) / (8×1) = -5/8

Since the denominators are same we can add them directly

-62/8 + (-5)/8 = (-62 + (-5))/8 = (-62-5)/8 = -67/8

(vi) 5/36 and -7/12

Solution: The denominators are 36 and 12

By taking LCM for 36 and 12 is 36

We rewrite the given fraction in order to get the same denominator

5/36 = (5×1) / (36×1) = 5/36 and

-7/12 = (-7×3) / (12×3) = -21/36

Now, the denominators are same we can add them directly

5/36 + -21/36 = (5 + (-21))/36 = 5-21/36 = -16/36 = -4/9

(vii) -5/16 and 7/24

Solution: The denominators are 16 and 24

By taking LCM for 16 and 24 is 48

We rewrite the given fraction in order to get the same denominator

-5/16 = (-5×3) / (16×3) = -15/48 and

7/24 = (7×2) / (24×2) = 14/48

Now, the denominators are same we can add them directly

-15/48 + 14/48 = (-15 + 14)/48 = -1/48

(viii) 7/-18 and 8/27

Solution: Firstly we need to convert the denominators to positive numbers.

7/-18 = (7 × -1)/ (-18 × -1) = -7/18

The denominators are 18 and 27

By taking LCM for 18 and 27 is 54

We rewrite the given fraction in order to get the same denominator

-7/18 = (-7×3) / (18×3) = -21/54 and

8/27 = (8×2) / (27×2) = 16/54

Since the denominators are same we can add them directly

-21/54 + 16/54 = (-21 + 16)/54 = -5/54

Similar questions