Math, asked by mdumayr, 10 months ago

the rationalising factor of a^2/3-a^1/3b^1/3+b^2/3​

Answers

Answered by MaheswariS
1

\textbf{Given:}

a^\frac{2}{3}-a^\frac{1}{3}\,b^\frac{1}{3}+b^\frac{2}{3}

\textbf{To find:}

\text{The rationalzing factor of $a^\frac{2}{3}-a^\frac{1}{3}\,b^\frac{1}{3}+b^\frac{2}{3}$}

\textbf{Solution:}

\text{The rationalizing factor of the given expression is an expression}

\text{which makes the given expression rational}

\text{when multiplying}

\text{Consider,}

a^\frac{2}{3}-a^\frac{1}{3}\,b^\frac{1}{3}+b^\frac{2}{3}

\text{when we multiply it with $a^\frac{1}{3}+b^\frac{1}{3}$}

(a^\frac{1}{3}+b^\frac{1}{3})(a^\frac{2}{3}-a^\frac{1}{3}\,b^\frac{1}{3}+b^\frac{2}{3})

=(a^\frac{1}{3}+b^\frac{1}{3})((a^\frac{1}{3})^2-a^\frac{1}{3}\,b^\frac{1}{3}+(b^\frac{1}{3})^2)

\text{Using the identity}

\boxed{\bf\,x^3+y^3=(x+y)(x^2-xy+y^2)}

\text{we get}

=(a^{\frac{1}{3}})^3+(b^{\frac{1}{3}})^3

=a+b\;\text{which is rational}

\therefore\textbf{The required rationalizing factor is $\bf\,a^\frac{1}{3}+b^\frac{1}{3}$}

Similar questions