Math, asked by guptaananya2005, 1 month ago

The real values of x satisfy the inequality

 {x}^{ log_{3}(x) } > 3
Quality answer needed.

Moderators, Brainly or genius, please answer it.

Thank you in advance. ​

Answers

Answered by shreya81952
0

ANSWER:

$A(n) \in \Theta(n^{\log_b a}) = \Theta(n^{\log_2 2} ) = \Theta(n)$

PLEASE MARK ME AS BRAINLIEST

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given Logarithmic inequality is

\rm :\longmapsto\: {x}^{ log_{3}(x) } > 3

Now, obviously log is defined when x > 0.

So, 2 cases arises,

Case:- 1 When 0 < x < 1

Case :- 2 When x > 1

Consider,

\rm :\longmapsto\:When \: 0 &lt; x &lt; 1

\rm :\implies\:log_{3}(x)  &lt;  0

So,

\rm :\longmapsto\: {x}^{ log_{3}(x) } &gt; 3

On taking log on both sides,

\rm :\longmapsto\: log({x}^{ log_{3}(x) }) &gt; log3

\rm :\longmapsto\: log_{3}(x) \: logx  &gt;  log3

\rm :\longmapsto\: log_{3}(x) \: &gt;   \dfrac{log3}{logx}

\rm :\longmapsto\: log_{3}(x) \: &gt;  \dfrac{1}{ log_{3}(x) }

\rm :\longmapsto\: {log_{3}(x) } {}^{2} \: &gt;  1

\rm :\longmapsto\: {log_{3}(x) } {}^{2} \: - 1 &gt;  0

\rm :\longmapsto\: (log_{3}(x)  - 1)(log_{3}(x) + 1) &gt; 0

\rm :\longmapsto\: log_{3}(x) + 1 &lt;  0 \:  \:  \:  \{ \because \: log_{3}(x) - 1 &lt; 0 \}

\rm :\longmapsto\: log_{3}(x) &lt;  -  \: 1 \:

\rm :\longmapsto\:x &lt;  {3}^{ - 1}

\rm :\implies\:x &lt; \dfrac{1}{3}

\bf\implies \:0 &lt; x &lt; \dfrac{1}{3}

Case :- 2

\rm :\longmapsto\:When \: x  &gt;  1

\rm :\implies\:log_{3}(x) &gt; 0

So, given inequation is

\rm :\longmapsto\: {x}^{ log_{3}(x) } &gt; 3

On taking log on both sides, we get

\rm :\longmapsto\: log({x}^{ log_{3}(x) }) &gt; log3

\rm :\longmapsto\: log_{3}(x) \: logx  &gt;  log3

\rm :\longmapsto\: log_{3}(x) \: &gt;   \dfrac{log3}{logx}

\rm :\longmapsto\: log_{3}(x) \: &gt;  \dfrac{1}{ log_{3}(x) }

\rm :\longmapsto\: {log_{3}(x) } {}^{2} \: &gt;  1

\rm :\longmapsto\: {log_{3}(x) } {}^{2} \: - 1 &gt;  0

\rm :\longmapsto\: (log_{3}(x)  - 1)(log_{3}(x) + 1) &gt; 0

\rm :\longmapsto\: log_{3}(x)  -  1  &gt;  0 \:  \:  \:  \{ \because \: log_{3}(x)  +  1 &gt; 0 \}

\rm :\longmapsto\: log_{3}(x)  &gt;  \: 1 \:

\rm :\longmapsto\:x  &gt;   {3}^{1}

\bf\implies \:x &gt; 3

Hence,

The real values of x satisfy the

\rm :\longmapsto\: {x}^{ log_{3}(x) } &gt; 3

is

\bf\implies \:\boxed{ \bf \:x \:  \in \: \bigg(0, \: \dfrac{1}{3} \bigg) \:  \cup \: (3, \:  \infty )}

Similar questions